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Abstract

Hematopoietic gene therapy has markedly progressed during the last 15 years both

in terms of safety and efficacy. While a number of serious adverse events (SAE) were

initially generated as a consequence of genotoxic insertions of gamma-retroviral vec-

tors in the cell genome, no SAEs and excellent outcomes have been reported in

patients infused with autologous hematopoietic stem cells (HSCs) transduced with

self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC

gene therapy have extended the number of monogenic diseases that can be treated

with these approaches. Nowadays, evidence of clinical efficacy has been shown not

only in primary immunodeficiencies, but also in other hematopoietic diseases, includ-

ing beta-thalassemia and sickle cell anemia. In addition to the rapid progression of

non-targeted gene therapies in the clinic, new approaches based on gene editing

have been developed thanks to the discovery of designed nucleases and improved

non-integrative vectors, which have markedly increased the efficacy and specificity

of gene targeting to levels compatible with its clinical application. Based on advances

achieved in the field of gene therapy, it can be envisaged that these therapies will

soon be part of the therapeutic approaches used to treat life-threatening diseases of

the hematopoietic system.
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1 | INTRODUCTION

While transplantation of allogeneic hematopoietic stem cells (HSCs)

from healthy donors constitutes the standard therapy for patients with

inherited hematopoietic diseases, the proportion of patients with HLA

compatible donors is limited. Additionally, significant side effects mainly

related to graft vs host disease (GVHD), infections and graft failure are

associated to this therapeutic intervention. Due to these limitations, and

because of advances in the development of gene therapy, the genetic

correction of autologous HSCs is becoming an alternative therapeutic

option to allogeneic transplantation in inherited hematopoietic diseases.

Based on the self-renewing and multi-potent properties of primi-

tive HSCs, these rare bone marrow (BM) cells were considered an

ideal target to correct genetic defects characteristic of inherited

hematopoietic diseases. HSCs are responsible for the long-term gen-

eration of peripheral blood (PB) T- and B-lymphocytes, natural killer

cells, monocytes, granulocytes, eosinophils, basophils, macrophages,

erythrocytes and platelets.1 Therefore, any monogenic disease associ-

ated with defects in blood cells could be potentially treated by means

of the genetic correction of the HSCs.

Since the in vivo transduction of HSCs is a very inefficient pro-

cess, current hematopoietic gene therapies are based on the collec-

tion and the ex vivo transduction of autologous HSCs with

therapeutic vectors. Corrected cells are then reinfused into the

patient, in most instances after sub-myeloablative or myeloablative

conditioning to facilitate the engraftment of corrected cells. While
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current trials of HSC gene therapy are based on non-targeted

approaches with self-inactivated gamma-retroviral (RV) and lentiviral

(LV) vectors, new approaches use more precise strategies based on

gene editing (see schematic approaches of HSC gene therapy in

Figure 1).

Despite the clinical efficacy of the first gene therapy trials con-

ducted in patients with X-linked severe common immunodeficiency

(SCID-X1)2-4 and ADA-SCID,5,6 and later on in chronic granulomatous

disease (CGD)7 and Wiscott-Aldrich (WAS) patients,8 risks associated

to the use of gamma-retroviral vectors (RVs) were observed in several

patients whose HSCs were transduced with these vectors.7-13 Never-

theless, the generation of self-inactivated lentiviral (SIN-LV) and

gamma-retroviral vectors (SIN-RVs) has had an enormous impact on

the clinical development of gene therapy since in addition to their

clinical efficacy, no serious adverse events (SAEs) have been reported

in patients treated with these new vectors.

Advances in the gene therapy of primary immunodeficiencies,

β-hemoglobinopathies and bone marrow failure (BMF) syndromes will

be described in this review. Additionally, the evolvement of HSC gene

editing will be discussed due to its rapid progression.

2 | GENE THERAPY IN PRIMARY
IMMUNODEFICIENCIES

Primary immunodeficiencies (PIDs) are a heterogeneous group of rare

diseases associated with defects either in the number or the function

of cells of the immune system. PIDs comprise a group of more than

300 genetic defects affecting the most important system responsible

for protection against infections and cancer.14,15 Depending on the

specific PID, their incidence varies enormously.16 Additionally, since

the proper functioning of the immune system is required from the first

weeks of life, PIDs frequently become life-threatening diseases that

appear early in childhood. Clinical symptoms are heterogeneous, and

are generally associated with a high rate of infections and even mor-

tality. The only curative treatment for PIDs, besides ADA-SCID for

which enzyme replacement has proven to be partially effective,17 is

hematopoietic stem cell transplantion (HSCT).18 Outcomes of HSCT

for PIDs have markedly improved after the first transplants were per-

formed in WAS19 and SCID20 patients. Nevertheless, the possibility of

finding a matched donor for patients with a severe PID is limited, in

many instances due to the necessity of performing the transplant dur-

ing the first months of life. Gene therapy was thus considered a good

alternative for many of these patients, which led to a longer life

expectancy of PID patients.15

Clinical trials in patients with SCID-X12-4,21 and ADA-SCID5,6

clearly showed the benefit of gene therapy in PIDs. In both cases, RVs

were used to facilitate the insertion of the therapeutic gene in patient

HSCs. Unfortunately, 2 years after the initiation of the SCID-X1 trials

SAEs consisting of lymphocytic leukemias were first observed in two

patients due to insertional oncogenesis events. In both cases, RV inte-

grations in the proximity of the LMO2 proto-oncogene promoted the

transactivation of this gene through the LTR (long terminal repeat)

enhancer of the RV provirus.9,10 Similar SAEs were then observed in

other X1-SCID patients3,4,11,12 and also in X-CGD7,13 and WAS

patients22 (Table 1).

In contrast to the first ADA-SCID trials, in which no conditioning

was used and where PEG-ADA was not stopped at the time of the

infusion of tranduced CD34+ cells,34 in subsequent trials a moderate

conditioning was used, and PEG-ADA was suspended prior to gene

therapy. 6,25,27 These modifications markedly improved the efficacy of

the therapeutic approach. Moreover, in contrast to observations in

other PIDs, in none of the ADA-SCID-treated patients have SAEs

been reported (Table 1), even though integration hotspots in different

proto-oncogenes were identified. 5,6,25,27,34,35 Due to the similarities

of RV backbones used in the ADA-SCID trial and in other trials where

insertional oncogenesis events were generated, differences in either

the therapeutic transgene or most probably in the nature of the

Ex vivo 
Gene Therapy

Non -Targeted
RVs, LVs…

Targeted 

CD34 +

Cells

In vivo
Gene Therapy

F IGURE 1 Gene therapy approaches for the treatment of monogenic blood cell diseases. Ex vivo gene therapy approaches are based on the
collection patient's hematopoietic stem cells, followed by their genetic correction (either targeted or untargeted) and reinfusion of corrected cells
in the patient. In vivo gene therapy approaches are based on the direct inoculation of viral or non-viral vectors in the patient, aiming the in situ
genetic correction of affected cells [Colour figure can be viewed at wileyonlinelibrary.com]
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disease should account for the safety associated to ADA-SCID gene

therapy. After the observation of the first SAEs in a number of PID

patients, the gene therapy field rapidly progressed thanks to the

development of safer therapeutic vectors. The generation of self-

inactivated lentiviral vectors (SIN-LV)36,37 and SIN-RV38,39 soon

showed the relevance of these new viral vectors. The safety of SIN-

LVs was shown to be a consequence of both the inactivation of the

enhancer activity of the HIV-1 LTRs—which dramatically reduced the

transactivation potential of the provirus—and also of the integration

properties of LVs, which in contrast to RVs do not preferentially tar-

get the transcription start sites. The possibility of using internal pro-

moters facilitating the selective expression of the transgene in specific

hematopoietic lineages constituted additional advantages of these

new vectors over the first generation of RVs.40-43

SIN vectors, mainly SIN-LVs, rapidly became the preferred vectors

for the treatment of PIDs. In the case of ADA-SCID and X1-SCID, the

EF1α promoter was selected to drive expression of therapeutic trans-

genes.24,44-46 In the case of X-CGD, a chimeric promoter consisting of

the fusion of regulatory sequences of the c-fes and Cathepsin G genes

was used to promote a preferential expression of gp91 in myeloid

cells.47 In the WAS trial,29 the selected promoter included the regula-

tory region of the WAS promoter aiming at driving a physiological

expression of WASP in PB cells48,49 (see Table 1).

Thanks to the development of SIN-LV and SIN-RV, more than

100 patients with PIDs have been treated with these new vectors.

Strikingly, no SAEs and excellent clinical outputs have been observed

in these patients, suggesting that gene therapy will soon constitute a

therapeutic alternative to HSCT for patients with PIDs.50

Advances in hematopoietic gene therapy have encouraged the

development of new studies in other PIDs. This is the case of the leu-

kocyte adhesion deficiency (LAD), which is a group of syndromes

affecting leukocyte trafficking. Among them, LAD type I (LAD-I) is the

most prevalent, affecting 1/1 000 000 births.51 LAD-I is an autosomal

recessive PID characterized by deficient β2 integrins expression.52

These membrane glycoproteins are αβ heterodimers in which four dif-

ferent α subunits (CD11A, B, C and D proteins) dimerize with a com-

mon β subunit (CD18, encoded by the ITGB2 gene). CD18 expression

is thus required for normal leukocyte trafficking to infection sites.

Therefore, the characteristic clinical feature of LAD-I patients is the

increased number of infections that cannot be properly resolved. Two

main phenotypes have been described in LAD-I. The severe pheno-

type, with less than 2% CD18+ leukocytes in PB, is associated with

life-threatening infections from the first days of life.52-55 Patients with

2% to 30% of CD18+ leukocytes have less severe clinical symptoms,

including lower frequency of infections and a longer life expec-

tancy.51-54 As in other PIDs, the only curative treatment for these

patients is HSCT from matched donors. Gene therapy thus appears as

a very good alternative, mainly for severe LAD-I patients requiring an

urgent cure very early in life. A first attempt to treat LAD-I patients by

gene therapy used gibbon ape leukemia virus (GALV)-pseudotyped

RVs. A very low and transient engraftment of corrected cells was

observed in this trial, probably due to the absence of patient's condi-

tioning56 and to the fact that corrected LAD-I progenitor cells do not

develop proliferative advantage. Recent experimental data57 have

raised expectations for gene therapy in these patients. Our studies

showed the efficacy and safety of a gene therapy approach in an

LAD-I mouse model using a SIN-LV in which a chimeric internal pro-

moter47—already used in the gene therapy of X-CGD patients58—

drives the expression of CD18. The Chim.hCD18-LV conferred phe-

notypic correction in mouse LAD-I leukocytes, which then expressed

the heterodimer in their membrane and migrated to inflamed sites.57

TABLE 1 Summary of gene therapy trials carried out with gamma-retroviral vectors (RV) and with self-inactivated lentiviral (SIN-LV) and
gamma retroviral vectors (SIN-RV) trials in patients with primary immunodeficiencies

Disease Vector Vector promoter Conditioning
Number of
treated patients

Clinical
efficacy SAEs Alive§

Reported follow-up
(months) References

X1-SCID RV LTR (MLV) No 10 9 4 9 60-99 2,9-11,21

RV LTR (MLV) No 10 9 1 10 54-107 3,4,12

SIN-RV EF1α No 9 7 0 8 12-39 23

SIN-LV EF1α RIC 5 5 0 5 6-30 24

ADA-SCID RV LTR (MLV) RIC 18 15 0 18 28-161 5,6,25

RV RV LTR (MLV) RIC 10 9 0 10 33-84 26

RV RV LTR (MLV) RIC 6 4 0 6 24-84 27

SIN-LV EF1α RIC 20 18 0 20 17–54 28

WAS RV RV LTR (MLV) FC 10 9 7 8 25-81 8,22

SIN-LV WAS FC 3 3 0 3 20-33 29

SIN-LV WAS FC 7 6 0 6 9-42 30

CGD RV RV LTR (SFFV) FC 2 0 2 1 26-45 7,13

RV RV LTR (MLV) FC 2 0 0 2 36 31

SIN-LV Chimeric myeloid promoter FC 7 7 0 7 ND 32,33
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Based on these experimental results it is expected that LAD-I will be

added to the list of PIDs successfully treated by gene therapy.

3 | GENE THERAPY IN RED BLOOD CELL
DISORDERS

Inherited red blood cell (RBC) disorders constitute a second and

important group of inherited hematopoietic disorders that have been

treated by gene therapy. This group includes hemoglobinopathies

such as β-thalassemia (β-thal) and sickle cell disease (SCD), erythroid

metabolic diseases like glucose-6-phosphate dehydrogenase (G6PD)

and pyruvate kinase deficiency (PKD), and erythroid membrane disor-

ders like congenital dyserythropoietic anemia (CDA). Common symp-

toms include anemia and concomitant complications including

jaundice, iron overload, extra-medullar hematopoiesis and gallstones,

among others.

Hemoglobinopathies constitute the most prevalent RBC disorders.

Approximately 5% of the world population carries a hemoglobin

(Hb) alteration.59 The incidence of hemoglobinopathies is even more

frequent in areas where malaria is present because these pathologies,

together with other RBC disorders such as PKD, confer resistance to

the parasite infection.60,61

RBC disorders are caused by mutations in specific genes most of

which have already been identified and cloned. These diseases can be

cured by allogeneic HSCT, suggesting they are good candidates for

hematopoietic gene therapy. As gene-corrected HSPCs from patients

with RBC disorders do not develop advantage over diseased ones, full

hematopoietic conditioning is required to eliminate endogenous

HSCs, and to facilitate the engraftment of genetically corrected

cells.62,63

In the case of hemoglobinopathies, protein levels of 10% to 30%

are required to compensate the diseased phenotype of affected

RBCs.64 Additionally, the expression of globin proteins is tightly regu-

lated and restricted to the erythroid lineage. Therefore, lineage-

specific promoters were required in LVs designed for the treatment of

hemoglobinopathies. Examples of these erythroid specific vectors are

the BGI,65 TNS9,66 HPV569,67 GLOBE,68 and BB30569 vectors.

After early gene therapy attempts to treat β-thal patients with

RVs, safer SIN-LV with erythroid-specific promoters based on the glo-

bin locus control regions, were developed. These vectors showed

their efficacy and safety in mouse models. A clinical trial was then

developed in France with the BGI LV, showing clinical efficacy in

β-thal patients.65 A benign clone expansion was transiently observed

due to the integration of the viral vector in the regulatory region of

the HGMA2 gene. Thereafter, the proportion of this clone in circulat-

ing nucleated cells declined to less than 10%,65 while the patient

remained with stable levels of the therapeutic hemoglobin and only

required occasional transfusions.70 Two other clinical trials have been

conducted in the United States, Australia, France and Thailand using

the BB305 vector. Most (92%) of the non-β0β0 patients remained

transfusion-independent after a median follow up of 26 months. In

the long-term, good although variable levels of gene correction were

observed.69 More severe β0β0 and severe β+β+ phenotypes showed a

73% reduction in annualized transfusion requirements. Importantly,

vector integration studies showed a polyclonal reconstitution with no

specific clonal dominance that could reflect a leukemic process due to

insertional mutagenesis, thus revealing the safety of these gene ther-

apy approaches69 (Table 2).

A more recent trial was developed in Italy using the GLOBE LV. In

this study, HSPCs were collected from PB after mobilization with G-

CSF and plerixafor (an inhibitor of CXCR4/SDF1 chemokine signaling)

and were infused intra-bone in patients treated with myeloablative

conditioning with treosulfan plus thiotepa. This study showed rapid

hematopoietic recovery with polyclonal multilineage engraftment of

corrected cells, and a significant reduction and even discontinuation in

the transfusion requirements.72

SCD is caused by the sickle mutation in the β-globin gene, which

induces the polymerization of hemoglobin tetramers upon deoxygen-

ation. These polymers generate the characteristic sickle shape of

erythrocytes inducing SCD symptoms, such as hemolytic anemia and

stroke.80 As observed in β-thal, preclinical studies showed that LV-

based gene therapy could be a therapeutic option for SCD. Vectors

used for SCD were similar to those used for β-thal, although

expressed anti-sickling globins, such as fetal γ-globin,81 βT87Q82 or

βAS383 mutants which inhibit deoxy-hemoglobin S (deoxy-HbS) poly-

merization. Clinical studies in SCD patients showed that the infusion

of HSCs previously corrected with the BB305 vector expressing the

βT87Q anti-sickling globin resulted in transfusion independency for up

to 2 years.74 Multicenter studies have shown more difficulties in the

development of efficient gene therapies in SCD patients, probably

due to lower transduction efficiencies and poorer engraftment of

transduced progenitors. Attempts to increase the expression of the

fetal γ-globin gene have been conducted, either by overexpressing

the γ-globin cDNA70 or by inhibiting the expression of BCL11A, con-

sequently activating the expression of the fetal γ-globin84 (Table 2).

The second family of RBC disorders in which gene therapy has

been used in preclinical models includes erythroid metabolic

disorders—such as PKD (where the glycolysis energetic pathway is

affected)—and erythropoietic protoporphyria (EPP), which affects

heme metabolism.85

Pyruvate kinase (PK) is the metabolic enzyme that catalyzes the

last step of glycolysis. Defective PK activity thus impairs cell metabo-

lism in RBCs. Mutations in PKLR86,87 cause pyruvate kinase deficiency

(PKD), which constitutes the most frequent glycolytic enzymopathy.

The prevalence of PKD has been estimated at 1 to 9 cases per

100 000 people in the Caucasian population (https://www.orpha.net/

consor/cgi-bin/OC_Exp.php?Expert=766). As in other RBC disorders,

the main clinical symptom of PKD is hemolytic anemia of variable

severity. Jaundice, cholelithiasis, splenomegaly, variable degrees of

iron overload and reticulocytosis are additional complications caused

by the disease. The mainstay of treatment consists of blood transfu-

sions and iron chelation therapy. In severe cases, splenectomy may be

required. However, all of these treatments are only palliative.88

Our laboratory showed the efficacy of RVs in correcting the dis-

ease in a PKD mouse model, and showed that human RPK expression
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was capable of fully correcting the PKD phenotype when more than

25% genetically corrected cells were transplanted.89 A similar thera-

peutic threshold of corrected cells was reported in one PKD Basenji

dog infused with foamy vector-corrected HSCs.90 More recently, A

therapeutic and clinically applicable LV that was as effective as the RV

in curing the disease in PKD mice, which was generated in our labora-

tory, and showed a safe viral integration profile in mouse

hematopoiesis.91

Erythropoietic protoporphyria (EPP) is an autosomal recessive dis-

order of the porphyrin metabolism caused by a decrease in the activ-

ity of ferrochelatase. This defect results in the accumulation of toxic

PP in erythrocytes and liver, causing severe skin photosensitivity. The

possibility of treating EPP by cell therapy was described in a mouse

model of EPP (Fechm1pas/+).92-94 These authors reported a successful

gene therapy treatment for EPP using an erythroid-specific SIN-LV,

carrying the ferrochelatase cDNA under the control of the ankyrin-1

promoter linked to a mutated form of the NF-E2/AP1 sequence motif

of the HS40 element,95 although no clinical trials have been attempted

so far in this disease.

4 | GENE THERAPY IN INHERITED BONE
MARROW FAILURE SYNDROMES

Inherited bone marrow failure syndromes (IBMFS) comprise a wide

range of diseases in which mutations in more than 80 different genes

have been reported. IBMFS include Fanconi anemia (FA), dyskeratosis

congenita (DC), Diamond-Blackfan anemia (DBA), Shwachman-

Diamond (SD), severe congenital neutropenia (SCN) and congenital

amegakaryocytic thrombocytopenia (CAT), all of which are associated

with deficiencies in the production of blood cells.96

IBMFS are complex diseases with overlapping clinical manifesta-

tions, with BMF being a common feature and the main cause of mor-

tality. IBMFS are produced as a consequence of mutations in genes

involved in important biological functions, such as DNA repair, ribo-

some biogenesis or maintenance of the telomere length. As with PIDs,

HSCT currently constitutes the only curative treatment of the BMF

characteristic of these disorders.97 Nevertheless, the difficulty in find-

ing HLA-compatible donors, together with risks associated with

pretransplant conditioning regimens and GVHD constitute the main

limitations of HSCT in IBMFS.

Fanconi anemia (FA) is the most frequent IBMFS. Mutations in

any of the 22 FA genes so far discovered account for the disease, with

FANCA being the most frequently mutated FA gene (around 65% of

FA patients worldwide have mutations in this gene).98

All FA proteins cooperate in a common pathway involved in the

detection and repair of DNA inter-strand cross-links. The disruption

of this key pathway leads to congenital abnormalities, BMF and can-

cer predisposition.99 The inclusion of fludarabine (a potent immuno-

suppressive drug that does not cause DNA cross-linking) in

conditioning regimens of FA patients markedly improved the outcome

of transplanted patients.100,101 Nevertheless, HSCT in FA still leads to

side effects, such as increased incidence of squamous cell carcinomas,

probably due to the use of genotoxic conditioning regimens and

GVHD102-104.

Gene therapy was thus considered a good alternative to HSCT for

FA patients. However, difficulties in the development of FA gene

therapy were derived from the low number of HSCs in these

patients,105 which limited the collection of clinically relevant numbers

of HSCs either from the BM106 or from G-CSF-mobilized PB107,108

from these patients. Despite these difficulties, the observation of

hematological improvements in FA mosaic patients suggested that the

correction of a low number of HSCs could be sufficient to restore the

hematopoiesis of these patients.109-111 This phenomenon was consid-

ered a natural gene therapy process, which has been recently be

reproduced by ex vivo gene therapy in Fanconi anemia subtype A

(FA-A) CD34+ cells transplanted into immunodeficient mice.112

Although initial studies showed the efficiency of RVs to correct the

phenotype of FA mouse HSCs and FA human hematopoietic progeni-

tor cells (HPCs),113-117 previous FA gene therapy trials with RVs failed

to show the engraftment of corrected HSCs.106,118,119 Different

aspects may have limited the success of previous FA gene therapy tri-

als in the clinic, including the low number of infused HSCs, the pro-

longed incubation period used to transduce these cells, or the

absence of patient conditioning (see review in Reference 120).

The 24 hours-transduction of G-CSF/plerixafor mobilized FA-A

CD34+ cells under conditions that minimized oxidative and TNFα-

induced damage facilitated the engraftment of corrected hematopoi-

etic cells in immunodeficient mice.112 Importantly, these cells showed

a marked proliferative advantage over time, showing the feasibility of

preserving the engraftment capacity of FA HSCs after gene therapy,

which suggests that a similar proliferative advantage could take place

in FA patients. Recently, two different trials using similar FANCA LVs

have started in the United States and in Spain (see review in Refer-

ence 121, with preliminary results showing engraftment of corrected

HSCs in the Spanish trial.122

Diamond-Blackfan anemia (DBA) is another rare congenital IBMFS

that is clinically and also genetically very heterogeneous.123 Approxi-

mately 55% of patients with DBA are associated with sporadic muta-

tions in DBA genes.124 In most instances, autosomal dominant

mutations with incomplete penetrance have been characterized. So

far, these mutations have been found in 20 out of the 80 genes

encoding for human ribosomal proteins (RP). Mutations in RPS19125

are observed in 25% of DBA patients. Data from the EuroDBA con-

sortium showed that more than 90% of DBA patients are associated

with mutations occurring in six DBA genes (RPS19, RPL5, RPS26,

RPL11, RPL35A and RPS24).126 In addition to mutations in RP genes,

two non-RP genes have recently been reported in DBA patients:

GATA1 and TSR2.127-130 While GATA1 belongs to a family of tran-

scription factors with an important role in the development of RBCs

and platelets, TSR2 codifies a protein involved in 20S pre-rRNA

processing.

Allogeneic HSCT represents the only curative treatment for DBA

patients. Nevertheless, side effects such as graft failure and GVHD

limit the efficacy of HSCT in these patients. As reported in FA, the

observation of mosaic DBA patients suggests the proliferative
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advantage of reverted HSCs,131,132 reinforcing the idea that gene

therapy should constitute a relevant therapeutic strategy in DBA.

Previous experimental studies have shown that both RVs and LVs

can correct the characteristic phenotype of DBA cells. In this respect,

Hamaguchi et al showed proliferative defects in erythroid progenitors

from patients with DBA and also that these defects could be amelio-

rated after complementation with RPS19-LVs.133 Thereafter, the

same group showed that the RV-mediated correction of CD34+ cells

from DBA patients favored the erythro-differentiation of these cells,

and reported their repopulating ability in immunodeficient mice.134

Gene therapy studies conducted in a conditional RPS19 knock-

down mouse model with SIN-LVs showed that the ectopic expression

of RPS19 prevented the lethal BMF characteristic of these animals.135

Because these studies used LVs harboring the strong SFFV promoter,

subsequent studies were carried out with a more clinically relevant

EFSα-RPS19 LV.136 Based on preclinical gene therapy studies already

conducted it is expected that gene therapy trials in patients with DBA

will be developed in coming years.

Dyskeratosis congenita (DC) constitutes another IBMFS associ-

ated with mutations in any of the 15 genes related with the mainte-

nance of telomere length.137-140 Three inherited forms of the disease

have been described: X-linked, autosomal dominant and autosomal

recessive. The main manifestations of the disease are ungual dystro-

phy, leukoplakia, cutaneous hyperpigmentation, as well as BMF, which

appears in 80% of DC patients before the age of 30.141,142 In addition,

patients can develop immunodeficiency, pulmonary fibrosis, kidney or

liver failure and predisposition to develop myelodysplastic syndrome,

acute myeloid leukemia and squamous cell carcinoma.141 X-linked

dyskeratosis congenita (X-DC) is one of the major variants of DC, and

is caused by mutations in DKC1.143 This gene encodes for dyskerin, a

component of the telomerase complex.144,145 In cells derived from

patients with X-DC, telomerase activity is compromised as a conse-

quence of the defect in dyskerin.144

Although allogeneic HSCT remains the only curative option for

BMF of DC patients, the survival rate associated with the transplanta-

tion of these patients is still modest.146,147 The development of safe

and effective gene therapy approaches would thus prevent the main

complications associated with allogeneic transplantation.

In vivo gene therapy studies aiming at the reversion of the BMF

of Trf- and Tert-deficient mice have used adeno-associated viral vec-

tors (AAV9) carrying a healthy copy of Tert.148 Although AAVs can

remain for long periods of time as episomal concatemers in non-

dividing cells, in dividing cells AAV DNA is progressively diluted.

Strikingly, in the study of Bar et al, BM cells expressed Tert up to

8 months after administration of the AAV.148 Nevertheless, as total

BM cells were used for assessing Tert expression, the possibility that

this expression derive from non-dividing BM stromal cells has to be

considered. In both models, a significant improvement of blood cell

counts and elongation of telomere length were observed in PB and

BM cells. The proof-of-concept provided by these studies suggested

that AAV9 gene therapy approaches facilitating the expression of Tert

might have a potential therapeutic effect for the BMF of DC patients.

Nevertheless, safety issues related to the unregulated expression of

TERT should be carefully considered before this therapeutic approach

could be developed in the clinic.

Since X-DC patients with mutations in DKC1 represent approxi-

mately 25% of DC patients, the complementation of this gene consti-

tutes a relevant gene therapy approach in DC. However, different

studies have shown that transfection of X-DC cells with DKC1-vectors

does not correct the phenotype of these cells,149-151 indicating that

conventional gene therapy approaches with vectors expressing the

DKC1 gene may not constitute relevant strategies for the treatment

of these patients. Strikingly, a small peptide of dyskerin—the GSE24.2

peptide—was shown to reactivate telomerase in X-DC cells.150 The

enhanced telomerase activity of GSE24.2-treated cells maintained the

proliferation of these cells and decreased their oxidative stress, and

also their DNA damage and senescence rate.152 A smaller version of

GSE24.2—the GSE4 peptide—has been developed more recently,

showing similar efficacy.153 Recent preliminary studies have

suggested that the expression of this peptide in human cord blood

CD34+ cells may rescue the genetic defect in X-DC HSCs.154

5 | GENE EDITING: AN EMERGING GENE
THERAPY APPROACH IN HSCS

Gene editing has experienced a major breakthrough during the last

few years mainly due to advances in the design of nucleases capable

of generating double strand breaks (DSBs) in the DNA, and thus of

promoting homologous directed repair (HDR) in specific loci of the cell

genome. Three main types of nucleases: ZFNs, TALEN and

CRISPR/Cas9 have been used to target human HSCs. The efficacy of

these nucleases to specifically target any region of the genome,

together with the rapid development of CRISPR/Cas9 nucleases have

spread the application of gene editing to treat many different patholo-

gies using a variety of approaches that include correction of specific

mutations 155, knock-in of therapeutic cDNAs into mutated loci 156,

insertion of therapeutic cassettes into safe harbor loci 157, or inactiva-

tion of regulatory sequences inhibiting the expression of specific

genes to compensate the loss of function of mutated genes158,159

(see schematic representations of different gene editing approaches

in Figure 2). All these advances are rapidly moving gene editing into

the clinic for the treatment of hematopoietic inherited diseases160-162.

Different approaches have been explored to facilitate the delivery

of nucleases and donor sequences into human HSCs. Electroporation,

currently constitutes one of the most frequent methods used for the

delivery of nucleases. On the other hand, transduction of HSCs with

non-integrative viral vectors constitutes the most efficient method for

the delivery of the donor constructs. ZFNs and integrase-defective

lentiviral vectors (IDLVs) were successfully used for the editing of

human HSCs.163 Although gene-editing efficiencies were markedly

reduced in primitive HSCs as compared to the bulk of CD34+ cells,

this study opened the possibility of using gene editing strategies for

the treatment of hematological disorders. The same study showed the

feasibility of correcting BM HSCs from SCID-X1 patients by means of

the insertion of exons 5 to 8 of IL2RG cDNA in the endogenous IL2RG
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gene. A more recent study has shown gene correction of SCID-X1

HSCs using a CRISPR-Cas9/AAV6-based strategy for the integration

of the IL2RG cDNA into the endogenous start codon of this gene.164

Additional studies confirmed the possibility of editing SCD HSCs by

the use of ZFNs combined with IDLVs to deliver the therapeutic

cDNA into the β-globin gene.165 Our group also showed the pheno-

typic correction of HSPCs from FA patients through the specific inte-

gration of FANCA in the AAVS1 locus using a similar combination of

ZFN mRNAs and therapeutic donor IDLVs.157

More recently, the use of AAVs carrying donor sequences has

been explored to facilitate the editing of primitive HSCs. AAVs are

non-integrative vectors that can carry either a single or a double

stranded DNA as donor templates for HDR. Among the different

AAV serotypes, AAV6 is particularly efficient for transducing

HSCs.166,167 Thus, AAV6 outperformed gene editing efficiencies as

compared to IDLVs, facilitating efficacies of gene editing between

20% and 40% when combined with appropriately designed

nucleases.156,168

An important advance in the field of gene editing was the discov-

ery of CRISPR/Cas9 nucleases and the observation that this nuclease

system could be efficiently delivered in HSPCs by the use of ribonu-

cleoprotein (RNP) complexes.169 These RNPs have been implemented

with the design of gRNAs aiming at increasing their stability,170 thus

achieving high HDR efficiencies in HSPCs.155,171 These new RNPs

together with the use of AAV6 for the delivery of donor templates are

thus approaching the field of gene editing to the treatment of patients

with hematological disorders.156,172,173 To reduce the complexity of

gene editing—for example, by avoiding handling of viral vectors—the

co-delivery of nucleases together with ssODN donors has been used

to correct specific mutations, including the SCD mutation in

HSCs.155,165

Since non-homologous end joining (NHEJ) is the most efficient

mechanism for the repair of DSBs, particularly in non-dividing

cells,174,175 this strategy has been used in the first FDA approved

gene editing trials with autologous HSCs. This trial aims at the treat-

ment of HIV infection using ZFNs cleaving the CCR5 locus, that

encodes a HIV receptor.176 In the field of hemoglobinopathies, the

knock-out of the BCL11A gene (Figure 2D)—a repressor of fetal glo-

bin177—facilitated the reexpression of fetal globin in adults cells.178

This strategy will soon be used in gene editing trials of β-thalasse-

mia160,161 and SCD162.

Improvements in the gene-editing field are facilitating its

implementation as gene therapy approaches to treat

hematopoietic-inherited diseases. The most concerning issue of

gene-editing technologies are the off-target effects caused by

engineered nucleases. In most instances, only a few in silico

predicted off-target sites are frequently analyzed, although deep

off-target analyses will be required in clinical gene-editing trials.

Different approaches, such as GUIDE-seq179 or CIRCLE-seq180

have been developed to facilitate the identification of off-targets

in the human genome. Furthermore, different refinements in

gene-editing strategies have been established to reduce the gener-

ation of off-targets, including paired Cas9 nickases,181 or high-

fidelity Cas9 nucleases.172

Gγ

Non-Homologous End Joining 

Aγ δ β

BCL11A

Gγ Aγ δ β

fetal adult

AAAAA

Gene Correction

AAAAA

Safe Harbor

pA

pA

Knock-In

SA pA

SA pA

AAAAA

BCL11AX

(A) (B)

(C) (D)

F IGURE 2 Illustration of different gene editing strategies. A, Gene correction: the mutation (red) is replaced by a wild-type sequence (blue). B,
Insertion in safe harbor loci: an expression cassette is inserted in specific safe harbor loci. The therapeutic cassette includes a constitutive
promoter, the therapeutic cDNA and a polyA (pA) sequence. C, Knock-in in homologous genes: the therapeutic cDNA is inserted in the mutated
locus, together with a splicing acceptor (SA) and a polyA (pA) sequence. D, Non-homologous end joining (NHEJ)-based editing: generation of
insertions and deletions (indels) in the targeted gene (eg, the generation of Indels in BCL11A allows the expression of fetal globins). β-globin locus
is shown, where the expression of fetal globin genes (Gγ and Aγ) are regulated by BCL11A. Mutated β-globin gene is shown as a red box [Colour
figure can be viewed at wileyonlinelibrary.com]
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Gene editing is a growing field that constitutes the cutting edge

for the treatment of hematopoietic inherited diseases. New strategies

to correct these disorders based on gene editing will indeed appear,

including the use of base editors to correct point mutations, or the

in vivo gene editing of mutated cells.

6 | PERSPECTIVES OF HEMATOPOIETIC
GENE THERAPY

As deduced from recent gene therapy trials conducted with self-

inactivated RV and LVs, the clinical efficacy and safety associated to

the use of these new vectors is now evident. As has happened with

the approval of Strimvelis for the treatment of ADA-SCID patients,

several new approvals of medicinal products based on the genetic cor-

rection of HSCs will appear in upcoming years. Discussions about the

efficacy and safety of gene therapy are rapidly moving toward addi-

tional questions related to the cost of these new therapies and the

procedures that should be used to facilitate the spread of these new

therapies to patients.182 Shall patients travel to specialized gene ther-

apy institutions, or shall these new medicinal products be delivered

under appropriate conditions to facilitate its application in local insti-

tutions? All these aspects are open questions that need to be carefully

evaluated for the appropriate application of gene therapy in the clinic.

Additionally, practical procedures should be developed to facilitate

that these new therapies could be efficiently transferred from aca-

demic institutions to pharmaceutical and biotech companies capable

of manufacturing these medicinal products at a large scale and under

highly controlled manufacturing conditions.

While conventional viral gene therapy is becoming an established

therapeutic option in different disorders, advanced gene therapies

such as gene editing are rapidly emerging. Thus, new challenges will

continuously appear, such as the necessity of limiting potential side

effects related to the off-target activity of designed nucleases.

Based on advances achieved in the field of hematopoietic gene

therapy there is no doubt that this new therapeutic modality will con-

stitute part of the therapeutic arsenal for the treatment of complex

and life-threatening diseases.
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