rd www.erpw2018.com Rovinj-Rovigno, Croatia 1-5 OCTOBER 2018

YOUNG SCIENTIST SESSION

3rd EUROPEAN RADIOLOGICAL PROTECTION RESEARCH WEEK

ENHANCE THE DECISION-MAKING PROCESS TO MINIMIZE THE IMPACT IN AGRICULTURAL AREAS DERIVED FROM A NUCLEAR ACCIDENT

Blanca García-Puerta Cristina Trueba Alonso Milagros Montero Prieto

Friday, October the 5th of 2018

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

INDEX 1. Introduction 2. Case study CASE STUDY 3. Methodology 4. Conclusions

INDEX

2. Case study

- 3. Methodology
- 4. Conclusions

1. Introduction

DOCTORAL THESIS

Geographic information technologies applied to study the radiological vulnerability of the agricultural systems in the Peninsular Spain

Thesis directors:- Cristina Trueba Alonso. Researcher at CIEMAT

With the support of Milagros Montero Prieto. Researcher at CIEMAT

nfidence

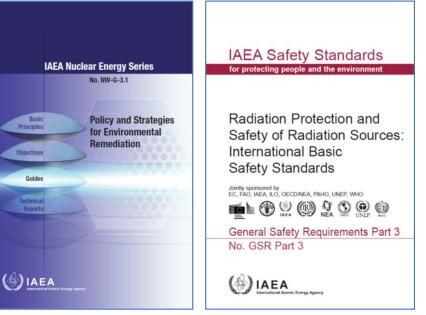
Coping with uncertainty for improved modelling and decision making in nuclear emergencies

WP4:

Transition to Long-Term Recovery, Involving Stakeholders in Decision-Making Processes.

ANURE PROJECT

Assessment of the Nuclear Risk in Europe – A case study in the Almaraz Nuclear Power Plant, Spain Joint Research Centre (EC/DG JRC) - CIEMAT (2017)



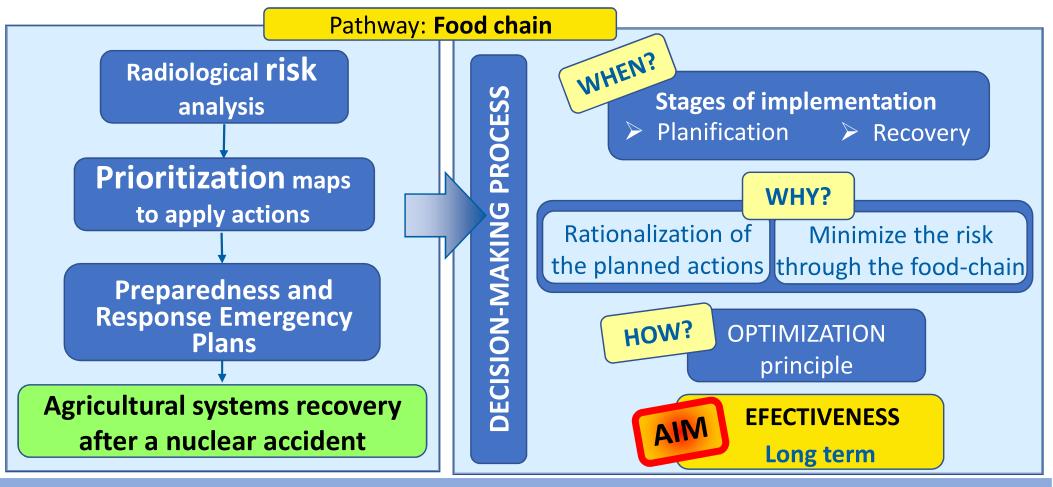
1. Introduction

RADIOLOGICAL OR NUCLEAR EMERGENCY PREPAREDNESS AND RESPONSE **Directive 2013/59/EURATOM of 5 December 2013** laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation 7.1.2014 EN Official Journal of the European Unio п DIRECTIVES COUNCIL DIRECTIVE 2013/59/EURATOM

International recommendations

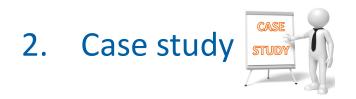
$\begin{array}{c} \text{ADAPTATION TO THE} \\ \text{SPANISH REGULATIONS} \end{array} \xrightarrow{} OR$

REQUIREMENTS FOR THE PREPAREDNESS ORIENTED TO THE POST-ACCIDENT MANAGEMENT



Introduction 1.

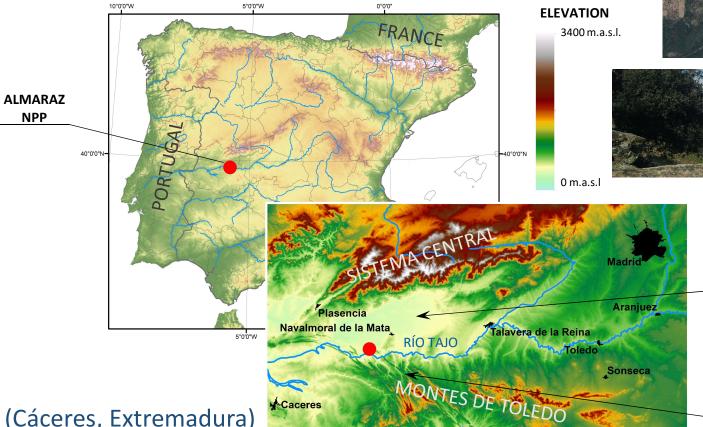
To elaborate **risk maps** related to radioactive contamination caused by an accidental release with off-site consequences for the medium and long term



INDEX

1. Introduction

- 3. Methodology
- 4. Conclusions


HYPOTHETICAL SEVERE ACCIDENT IN ALMARAZ NPP WITH OFF-SITE CONSEQUENCES

Geopolitics faction

Portuguese border

Orography

Tajo river valley

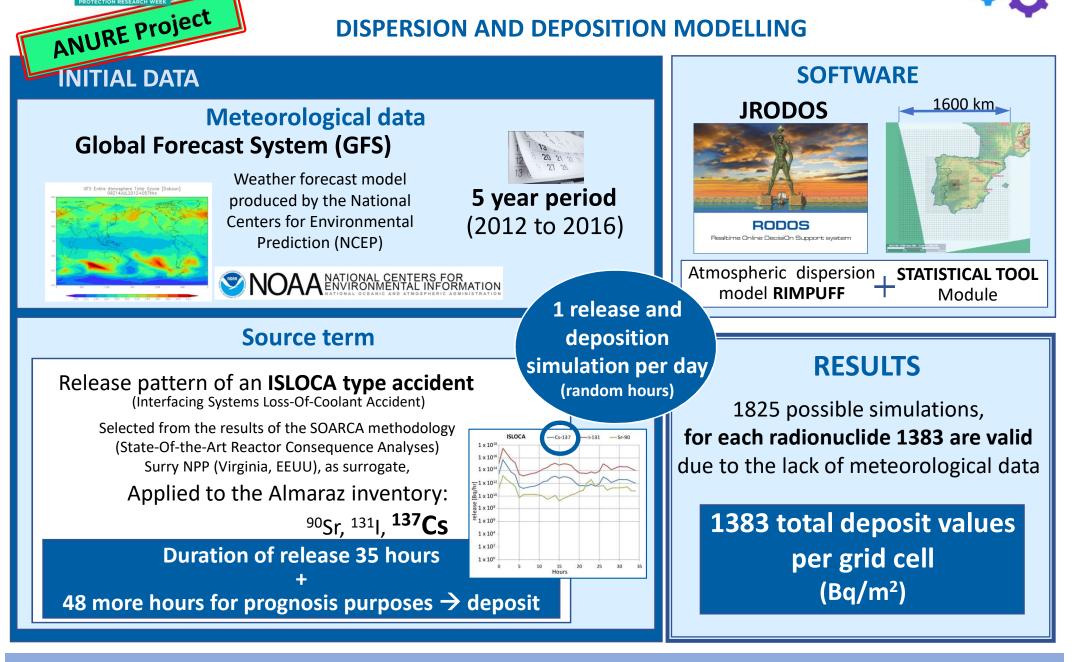
Caceres

Environment

2. Case study

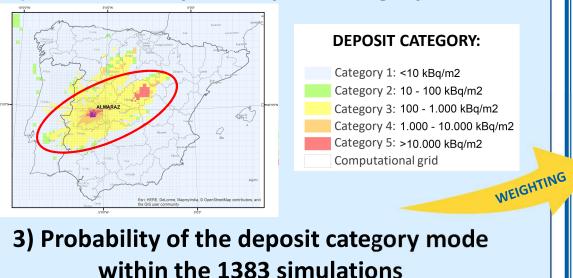
(Cáceres, Extremadura)

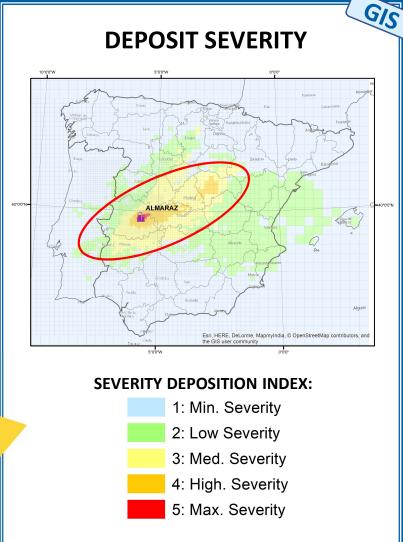
INDEX


- 1. Introduction
- 2. Case study
- 3. Methodology
- 4. Conclusions

Methodology 3.

DISPERSION AND DEPOSITION MODELLING


1383 activity concentration values of the total deposit of ¹³⁷Cs


Which is the most representative value in each cell

3.

1) Deposition category		
Contamination level	Activity concentration deposited (kBq/m ²)	Deposit category
Non-contaminated	<10	1
Slightly contaminated	10* - 100	2
Contaminated	100 - 1000	3
Heavily contaminated	1000 - 10000	4
Extremely contaminated	>10000	5
SOURCE: Nordic Guidelines and Recon *Lower level is not defined.	nmendations	

2) The most frequent deposit category: Mode

Methodology

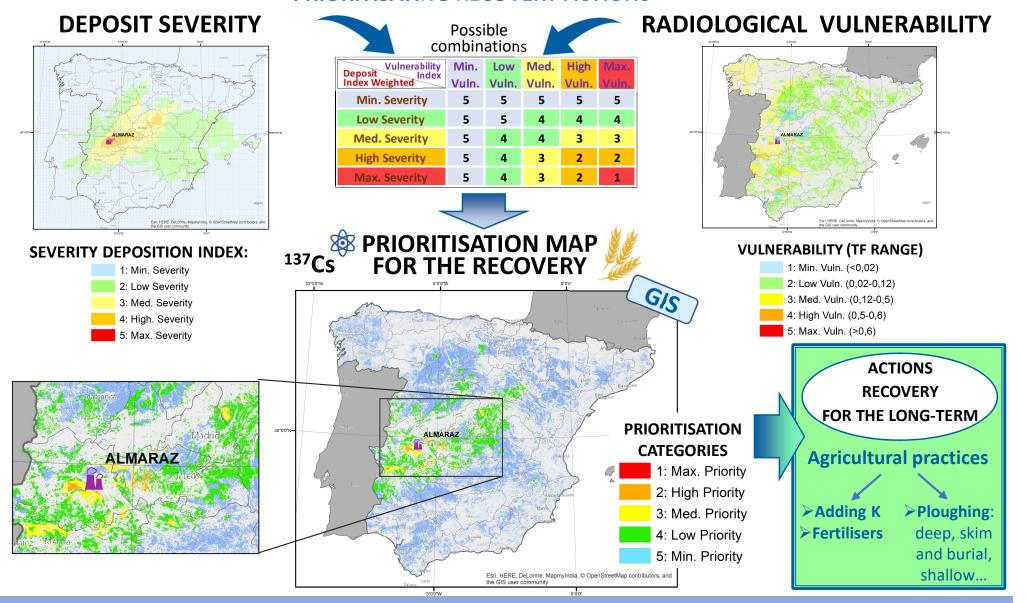
Soil profile

YOUNG SCIENTIST SESSION

3. Methodology

¹³⁷Cs BEHAVIOUR IN THE AGRICULTURAL SYSTEM

Soil-to-plant Transfer Factor (TF): Rainfed cereals \rightarrow grain Std. dev. CROP Mean Min. **Texture** Max. 3,90 x 10⁻² 2,00 x 10⁻³ Sandv 3,3 6,60 x 10⁻¹ 2,00 x 10⁻² 2,00 x 10⁻¹ 4,1 8,00 x 10⁻⁴ Loamy Clay 1.10 x 10⁻² 2.7 2.00 x 10⁻⁴ 9.00 x 10⁻² (Temperate climate values) Jptake Organic 4.30 x 10⁻² 2.7 1.00 x 10⁻² 7.30 x 10⁻¹ SOURCE: REP. 472 IAEA 2010 root process Adjusted transfer factor according to the K content: $TF_Cs_{Adjusted} = \left(\frac{TF_{Max} - TF_M}{0.1 - K_{Final}}\right) \times (K - K_{Final}) + TF_M$ SOURCE: CLC 2012 Κ SOURCE: TEMAS PROYECT Nutrient GIS ¹³⁷Cs Competitor RADIOLOGICAL VULNERABILITY SOURCE: ANE. INSTITUTO GEOGRÍAFICO NACIONA - TF_{Max} TF maximum value CATEGORIZATION - TF_M TF medium value Medium value K content for each soil - K group (cmol/kg), from the Spanish soil **VULNERABILITY:** profiles database. ALMARAZ (TF RANGE) - K_{Final} Aimed K content, which depends on 1: Min. Vuln. (<0,02) the clay content, under \rightarrow Clay **K**_{Final} 2: Low Vuln. (0,02-0,12) [cmol/kg] content 3: Med. Vuln. (0,12-0,5) 0 - 10 % 0,6 4: High Vuln. (0,5-0,6) 10 - 20% 0,9 5: Max. Vuln. (>0,6) 20 - 30 % 1 > 30% 1,1 Esri, HERE, DeLorme, MapmvIndia, © OpenStreetMap contributors the GIS user community



RADIOLOGICAL RISK MAP FOR THE FOOD-CHAIN EXPOSURE PATHWAY PRIORITISATING RECOVERY ACTIONS

INDEX

- 1. Introduction
- 2. Case study
- 3. Methodology

ACHIVES

- > Developed methodology to define radiological risk for the food chain.
- Importance of the local specificity.
- > Applicability of this methodology to any **European region**.

NEXT STEPS

- Study the **contaminated products** and the **effects** on the **customers**.
- ➢ Work on the soil-to-plant transfer factor values → more adapted to the Mediterranean environment.
- > Take into account the **yield** and the real **production** of the crops.
- Polish the prioritisation index categories for the actions to be taken facing the recovery.
- Study different agricultural practices to reduce the contamination effects on the crops, and therefore along the food-chain pathway.

rd www.erpw2018.com Rovinj-Rovigno, Croatia 1-5 OCTOBER 2018 ERPW

YOUNG SCIENTIST SESSION

3rd EUROPEAN RADIOLOGICAL PROTECTION RESEARCH WEEK

ENHANCE THE DECISION-MAKING PROCESS TO MINIMIZE THE IMPACT IN AGRICULTURAL AREAS DERIVED FROM A NUCLEAR ACCIDENT

THANK YOU FOR YOUR ATTENTION!

blanca.garciapuerta@ciemat.es

Friday, October the 5th of 2018

