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Introduction

In an effort to investigate the suitability of the con-
cept of portable hydrogen production, rich methanol com-
bustion (or partial oxidation) in a small-scale counter-flow
burner consisting of an array of multiple narrow chan-
nels (see Fig. [Il) is examined. The problem is described
within the framework of a one-dimensional model (narrow-
channel approximation [2]). Methanol oxidation is mod-
eled with detailed chemistry and transport using the re-
cently revised 247-step San Diego mechanism that involves
N = 50 reactive species [1].
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Fig. 1: Sketch of an array of multiple counter-flow narrow channels.
L is the length of the channels, d is the distance between the internal
surfaces of the walls, dy; is the thickness of the solid conducting walls,

and xr is half the distance between the opposed flames.

One-dimensional model

Assuming equal gas inflow velocity U, in all channels (thus

flames stabilize at symmetric positions =z due to heat re-
circulation [3]), periodicity allows to reduce the analysis to
a single channel ¢ with the following governing gas-phase
equations
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and with the flux boundary conditions [4] at the left and
right ends given by
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This one-dimensional formulation is identical to that
describing the propagation of a planar flame, with U evalu-
ated at the unburnt conditions being the flame propagation
velocity. Here, however, U(x) = { fodu(a:, y)dy}/d corre-
sponds to the average flow velocity within the prescribed
Poiseuille flow. The parameter b = 2\, /(dd,,) appears
in the energy equation as a volumetric heat-recirculation
term and measures the amount of heat transfered across
the dividing solid walls. For a micro-burner with d = 4

mm and d,, = 1 mm the order of magnitude of b lies typ-
ically within 10° W/(m’K) for materials as quartz to 10"
W/(m’K) for silicon carbide [5].

Two different lengths of the channels L = 2 ¢m and
L = 10 cm are investigated. In Fig. 2 we depict the tem-
perature and hydrogen molar fraction profiles along chan-
nel ¢ for different equivalence ratios at a fixed inflow veloc-
ity. In Fig. 8 we plot them for different inflow velocities
at a fixed equivalence ratio. We also plot in the figures
(dot-dashed lines) the corresponding values for chemical
equilibrium conditions for ¢ = 2, 3 and 4.
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Fig. 2: Profiles of temperature and hydrogen molar fraction along chan-
nel i for L =2 cm and L = 10 cm. Calculated for ¢ = {2,3,4,5,6, 7},
Uy = 200 cm/s, Ty, = 343 K, p = 1 atm, and b = 10° W/m3 K.
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Fig. 3: Profiles of temperature and hydrogen molar fraction along chan-
nel ¢ for L = 2 cm (dashed curves) and L. = 10 cm (solid curves).
Calculated for U, = {100,200,300,400,800, 1200, 1600, 2000} cm /s,
»=3T,=343K, p=1atm, and b = 100 W/m3 K.

Figs. 4 and show the conversion efliciency of
methanol to hydrogen, defined, as in [5|, as the ratio of
Hs moles produced per unit time at the exit of the reactor

divided by the Hy moles produced if all the atomic hydro-
gen bound in the fuel was converted to Hs. It is calculated
as Ny, = NH%OM / QNCH?)OH,u, with N ; the molar flow rate of
the species 7. Maximum efficiency is found for equivalence
ratios in the vicinity of 3 and inlet velocity of 200 cm/s.
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Fig. 4: Methanol-to-hydrogen conversion efficiency variation with the
equivalence ratio. Calculated for U, = 200 cm/s, T, = 343 K, p = 1
atm, and b = 10° W/m3 K. The dashed curve corresponds to equilib-
rium conditions. The solid circle indicates the blow-off limit (beginning
of the unstable branch).
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Fig. 5: Methanol-to-hydrogen conversion efficiency variation with the
inlet velocity. Calculated for ¢ = 3, T, = 343 K, p = 1 atm, and
b=10° W/m> K.

e Study the effect of external heat losses.

e Study the effect of water addition (autothermal reform-
ing)
e [nvestigate the effect of flame curvature (2D effects)
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