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Introduction

In an effort to investigate the suitability of the con-
cept of portable hydrogen production, rich methanol com-
bustion (or partial oxidation) in a small-scale counter-flow
burner consisting of an array of multiple narrow chan-
nels (see Fig. 1) is examined. The problem is described
within the framework of a one-dimensional model (narrow-
channel approximation [2]). Methanol oxidation is mod-
eled with detailed chemistry and transport using the re-
cently revised 247-step San Diego mechanism that involves
N = 50 reactive species [1].
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Fig. 1: Sketch of an array of multiple counter-flow narrow channels.

L is the length of the channels, d is the distance between the internal

surfaces of the walls, dw is the thickness of the solid conducting walls,

and xf is half the distance between the opposed flames.

One-dimensional model

Assuming equal gas inflow velocity Uu in all channels (thus
flames stabilize at symmetric positions ±xf due to heat re-
circulation [3]), periodicity allows to reduce the analysis to
a single channel i with the following governing gas-phase
equations

ρU = ρuUu = const., (1)
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=
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= −
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(ρYkVk) + ω̇kWk, k = 1, 2, . . . , N,

(3)

ρ =
pW̄

RT
, (4)

and with the flux boundary conditions [4] at the left and
right ends given by

x = −L/2 :











(ρUh)u = ρUh− λg
dT

dx
+

N
∑

k=1

ρYkVkhk,

(ρUYk)u = ρUYk + ρYkVk,

(5)

x = L/2 :
dT

dx
= 0,

dYk

dx
= 0. (6)

This one-dimensional formulation is identical to that
describing the propagation of a planar flame, with U evalu-
ated at the unburnt conditions being the flame propagation
velocity. Here, however, U(x) = {

∫ d

0 u(x, y) dy}/d corre-
sponds to the average flow velocity within the prescribed
Poiseuille flow. The parameter b = 2λw/(d dw) appears
in the energy equation as a volumetric heat-recirculation
term and measures the amount of heat transfered across
the dividing solid walls. For a micro-burner with d = 4
mm and dw = 1 mm the order of magnitude of b lies typ-
ically within 105 W/(m3K) for materials as quartz to 107

W/(m3K) for silicon carbide [5].

Results

Two different lengths of the channels L = 2 cm and
L = 10 cm are investigated. In Fig. 2 we depict the tem-
perature and hydrogen molar fraction profiles along chan-
nel i for different equivalence ratios at a fixed inflow veloc-
ity. In Fig. 3 we plot them for different inflow velocities
at a fixed equivalence ratio. We also plot in the figures
(dot-dashed lines) the corresponding values for chemical
equilibrium conditions for φ = 2, 3 and 4.
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Fig. 2: Profiles of temperature and hydrogen molar fraction along chan-

nel i for L = 2 cm and L = 10 cm. Calculated for φ = {2, 3, 4, 5, 6, 7},

Uu = 200 cm/s, Tu = 343 K, p = 1 atm, and b = 106 W/m3 K.
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Fig. 3: Profiles of temperature and hydrogen molar fraction along chan-

nel i for L = 2 cm (dashed curves) and L = 10 cm (solid curves).

Calculated for Uu = {100, 200, 300, 400, 800, 1200, 1600, 2000} cm/s,

φ = 3, Tu = 343 K, p = 1 atm, and b = 106 W/m3 K.

Figs. 4 and 5 show the conversion efficiency of
methanol to hydrogen, defined, as in [5], as the ratio of
H2 moles produced per unit time at the exit of the reactor

divided by the H2 moles produced if all the atomic hydro-
gen bound in the fuel was converted to H2. It is calculated
as ηH2

= ṄH2,out/2ṄCH3OH,u, with Ṅj the molar flow rate of
the species j. Maximum efficiency is found for equivalence
ratios in the vicinity of 3 and inlet velocity of 200 cm/s.
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Fig. 4: Methanol-to-hydrogen conversion efficiency variation with the

equivalence ratio. Calculated for Uu = 200 cm/s, Tu = 343 K, p = 1

atm, and b = 106 W/m3 K. The dashed curve corresponds to equilib-

rium conditions. The solid circle indicates the blow-off limit (beginning

of the unstable branch).
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Fig. 5: Methanol-to-hydrogen conversion efficiency variation with the

inlet velocity. Calculated for φ = 3, Tu = 343 K, p = 1 atm, and

b = 106 W/m3 K.

Future work

• Study the effect of external heat losses.

• Study the effect of water addition (autothermal reform-
ing)

• Investigate the effect of flame curvature (2D effects)
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