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Introduction

The stability of a premixed flame propagating in a
Hele-Shaw cell is investigated. The first effort on the prob-
lem was due to Joulin and Sivashinsky [1], who expanded
the classical hydrodynamic Darrieus-Landau model by in-
cluding the wall effects through an Euler-Darcy law in
the frame of the flame-sheet approximation. As a result,
instabilities associated with the transport process in the
flame were neglected. Kang et al. [2] extended the prob-
lem numerically by making use of a 2D compressible re-
active Navier-Stokes formulation within the Poiseuille flow
assumption. The present work performs the linear stability
analysis of a steady planar flame propagating between two
adiabatic parallel plates by including the Darrieus-Landau
(due to density change across the flame front), Rayleigh-
Taylor (due to buoyant forces) and diffusive-thermal (due
to unequal rates of thermal to molecular diffusion) effects.
The problem formulation is based on the asymptotic limit
when the ratio of the plates separation to the thermal flame
thickness, given by the parameter a = h/δT , is sufficiently
small.
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Fig. 1: Sketch of the Hele-Shaw cell with cell gap of size h and inclined

at an angle α with the horizontal.

Quasi-2D formulation

We assume a quasi-isobaric flame propagation in the
positive x′ direction. The system is open to the atmosphere
at the burnt side end and closed to the unburnt side end
so that the flame propagates into a nominally quiescent
gas. The system can be inclined at an arbitrary angle α
with the horizontal. The chemical reaction is modeled by
a global irreversible step of the form Fuel → Products,
strictly valid for fuel-lean mixtures. The adiabatic flame
speed SL and the thermal flame thickness δT = DT/SL,
with DT the thermal diffusivity of the mixture, are used as
the reference scales for appropiate non-dimensionalization,
together with the properties of the fresh unburnt mixture,
in the form

(x, y, z) = (x′/δT , y
′/δT , z

′/h), t = t′SL/δT ,

(u, v, w) = (u′/SL, v
′/SL, w

′/(a SL)), ρ = ρ′/ρu,

p = a2(p′ − patm)/(12Pr ρuS
2
L),

θ = (T ′
− Tu)/(Tad − Tu), Y = YF/YFu

.

When the asymptotic limit a = h/δT ≪ 1 is employed,
the flow properties are averaged across the cell gap and the
governing equations, in a reference frame moving with the
flame, x → x− uft, are reduced to the quasi-2D form
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where

ω =
β2

2u2pLe
(1 + q)2ρ2 Y exp

{

β(θ − 1)

1 + [q/(1 + q)](θ − 1)

}

,

and

Ux = −∂p/∂x +Gρ and Uy = −∂p/∂y. (5)

The parameters are: β = E(Tad − Tu)/RTad
2, q =

ρu/ρb − 1 = (Tad − Tu)/Tu, G = a2δT g sinα/(12Pr S2
L)

and the Lewis number Le. The factor up = SL/UL, with
UL =

√

2LeBρuDT/β2 (ρb/ρu) exp (−E/2RTad), corre-
sponds to the eigenvalue of the planar adiabatic problem,
given elsewhere [3].

Stability formulation

The steady-state of temperature, mass fraction and
flow velocity are perturbed in the form

f = f0(x) + ǫf1(x) exp (iky + λt), (6)

where f stands for θ, Y , p, and Ux and Uy. Perturbations
of the flame propagation velocity can be excluded without
loss of generality. Here λ ∈ C (the real part of which rep-
resents the growth rate), k is the transverse wave number
and ǫ is a small amplitude.

The linearized eigenvalue equations obtained when
substituting Eq. (6) into an adequate combination of
Eqs. (1)-(5) are reduced to
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∂x
,

where

A = BY0

{

β

[1 + [q/(1 + q)](θ0 − 1)]2
−

2q

(1 + qθ0)

}

,

B =
β2

2u2pLe
(1 + q)2ρ20 exp

{

β(θ0 − 1)

1 + [q/(1 + q)](θ0 − 1)

}

.

Results

Figs. 2 and 3 show the dependence of the real part of
λ with the wavenumber k for different values of the gravity
factor G and for Le = 1 and Le = 0.7, respectively. In the
figures we also include (in symbols) the calculated growth
rate of a sinusoidally perturbed planar flame in the quasi-
2D numerical simulations of Eqs.(2)-(5). The perturbation
of the planar solution is incorporated in the simulations by
superimposing a periodic disturbance of the temperature in
the y direction in the form A0 sin (ky), where A0 is a small
initial amplitude of the temperature (typically A0 = 0.1).
This disturbance of the temperature is quickly translated
to a sinusoidal amplitude of the flame front, which starts
to grow exponentially with the time (A ∼ expλt). If the
growth of the amplitude maintains a sinusoidal shape with
the time, the value of λ is positive and real and the natural
logarithm of the ratio A/A0 with the time gives the value
of λ. For completeness, we also show in Fig. 2 (dashed
lines) the growth rate of the hydrodynamic solution given
by Joulin and Sivashinsky [1] for the limit a ≪ 1. These
curves correspond to the algebraic dispersion relation

λ =
q(1 + q −G)

2(1 + q)
k, (7)

indicating that flames with G > 1 + q stabilize the planar
solution. For Le = 0.7 gravity can stabilize the largest hy-
drodynamic wavelengths of wrinkling but an intermediate
region of wavelengths (see G = 10 in Fig. 3).
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Fig. 2: The dependence of (real) λ on the wavenumber k calculated

for Le = 1, β = 10, q = 5, and different values of G. Symbols corre-

spond with the initial growth of a sinusoidally perturbed planar flame in

quasi-2D numerical simulations. The dashed curve corresponds with the

Joulin and Sivashinsky’s hydrodynamic solution [1] in the limit a ≪ 1.

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

λ

k

k

λ
Le=0.7, β=10, q=5

G=14

G=0

G=6

G=10

G=10

Fig. 3: The dependence of (real) λ on the wavenumber k calculated

for Le = 0.7, β = 10, q = 5, and different values of G. Symbols cor-

respond with the initial growth of a sinusoidally perturbed planar flame

in quasi-2D numerical simulations

Future work

The effect of the Saffman-Taylor instability (due to
viscosity change across the flame front) and small heat
losses to the plates (of the order a) can be incorporated
in the present formulation. The Saffman-Taylor mecha-
nism is seen to introduce an important effect in confined
geometries [4].
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