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Introduction

The premixed propagation of lean hydrogen-air flames
(¢ = 0.3) in Hele-Shaw cells (i.e. two adiabatic parallel
plates separated by a small distance h [1-3]) is investigated
using numerical simulations with detailed chemistry and
transport. We focus on the effect of the distance between
plates, h, for a semi-closed system of size 500 x 500¢ X h,
where 0 = 3.45 mm is the thickness of the planar adia-
batic flame. Hydrodynamic and diffusive-thermal instabili-
ties wrinkle the flame front to form small cellular structures

that increase the overall propagation velocity. Symmetric
and non- symmetric shapes are observed in the third di-
mension (i.e. along h).

The dynamics of the flame front is determined by solv-
ing the variable-density reactive Navier-Stokes equations:

dp

E—I—V-(pv) =0,
0
a(pv) +V-(pv-v)=—Vp+V -7,
0

E(PY/«) + V- (pvYy) = =V - ji +wi,
9 N-1

k=1

with the ideal gas equation of state:
pR,1 = p.

The species flux and the heat flux have the form
ik = pDrn VY and j, = =\, (Vhs— 3 hy VY;) +
Zg:_ll Jils,, respectively. The diffusivity of the species into
the mixture Dy, ,, 1s calculated using mixture-averaged dit-
fusion model. The chemistry is modeled using the Mével’s
mechanism for hydrogen oxidation, which includes N =9
species and 21 reactions [4|. A detailed comparison of the
ignition delay time and flame speed performance of Mével’s

mechanism with others commonly used in the literature is
provided in [5, 6].

The mixture is ignited at the open-to-atmosphere end
(x = 0 cm) with a series of evently-spaced hot spots.
The reactive front propagates towards the closed end
(x = 17.25 cm). The simulations compare three cases:

h=0.10¢ h=0fand h = 30 at t = 0.14, 0.31 and 0.06
seconds from the initial ignition, respectively:.

Diffusive-thermal instabilities (associated with the
small effective Lewis number of these mixtures, Le.s =
0.3) promote chaotic cell splitting and merging observed
along y in all the simulations. In Fig. 1, for A = 0.19y,
the gap is so tight (smaller than the critical wavelength
for instability) that only planar flame structures can be
seen in the third dimension. For this case, the correspond-
ing three-dimensional problem can be reduced to a two-
dimensional set of equations governed by Darcy’s law (i.e.
narrow-channel approximation [7]).

For i = 0y the narrow-channel approximation breaks
down. We show in Fig. 2 the emergence of non-symmetric
shapes in the third dimension, similar to those observed in
8], which increase the total flame surface area. Fig. 3 de-
picts a symmetric V-shape flame that appears during the
carly stages of the flame evolution for A = 30+.
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Fig. 1: Field of H-mole fraction for i = 0.10 s showing the flame front

curvature at time t = 0.14 s. Flame propagates from left to right.
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Fig. 2: Field of H-mole fraction for i = 0 showing the flame front

curvature at time t = 0.31 s. Flame propagates from left to right.
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Fig. 3: Field of H-mole fraction for & = 30 showing the flame front

curvature at time t = 0.06 s. Flame propagates from left to right.

Work in progress

Long-time flame evolution will be investigated by im-

plementing the formulation in a reference frame moving
with the flame. The velocity of this reference frame can be

calculated from [[[ wy, dzdydz/(p,Yu,, SLhLy).
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