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Introduction

The premixed propagation of lean hydrogen-air flames
(φ = 0.3) in Hele-Shaw cells (i.e. two adiabatic parallel
plates separated by a small distance h [1–3]) is investigated
using numerical simulations with detailed chemistry and
transport. We focus on the effect of the distance between
plates, h, for a semi-closed system of size 50δf × 50δf × h,
where δf = 3.45 mm is the thickness of the planar adia-
batic flame. Hydrodynamic and diffusive-thermal instabili-
ties wrinkle the flame front to form small cellular structures
that increase the overall propagation velocity. Symmetric
and non- symmetric shapes are observed in the third di-
mension (i.e. along h).

Formulation

The dynamics of the flame front is determined by solv-
ing the variable-density reactive Navier-Stokes equations:

∂ρ

∂t
+∇·(ρv) = 0,

∂

∂t
(ρv) +∇·(ρv · v) =−∇p +∇ · τ,

∂

∂t
(ρYk) +∇ · (ρvYk) = −∇ · jk + ω̇k,

∂

∂t
(ρhs) +∇·(ρvhs) = −∇ · jq −

N−1∑

k=1

∆hfk ω̇k,

with the ideal gas equation of state:

ρRgT = p.

The species flux and the heat flux have the form
jk = ρDk,m∇Yk and jq = −λ/cp (∇hs−

∑N−1
k=1 hsk∇Yk)+∑N−1

k=1 jkhsk, respectively. The diffusivity of the species into
the mixture Dk,m is calculated using mixture-averaged dif-
fusion model. The chemistry is modeled using the Mével’s
mechanism for hydrogen oxidation, which includes N = 9
species and 21 reactions [4]. A detailed comparison of the
ignition delay time and flame speed performance of Mével’s
mechanism with others commonly used in the literature is
provided in [5, 6].

Results

The mixture is ignited at the open-to-atmosphere end
(x = 0 cm) with a series of evently-spaced hot spots.
The reactive front propagates towards the closed end
(x = 17.25 cm). The simulations compare three cases:
h = 0.1δf , h = δf and h = 3δf at t = 0.14, 0.31 and 0.06
seconds from the initial ignition, respectively.

Diffusive-thermal instabilities (associated with the
small effective Lewis number of these mixtures, Leeff ≈

0.3) promote chaotic cell splitting and merging observed
along y in all the simulations. In Fig. 1, for h = 0.1δf ,
the gap is so tight (smaller than the critical wavelength
for instability) that only planar flame structures can be
seen in the third dimension. For this case, the correspond-
ing three-dimensional problem can be reduced to a two-
dimensional set of equations governed by Darcy’s law (i.e.
narrow-channel approximation [7]).

For h = δf the narrow-channel approximation breaks
down. We show in Fig. 2 the emergence of non-symmetric
shapes in the third dimension, similar to those observed in
[8], which increase the total flame surface area. Fig. 3 de-
picts a symmetric V-shape flame that appears during the
early stages of the flame evolution for h = 3δf .
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Fig. 1: Field of H-mole fraction for h = 0.1δf showing the flame front

curvature at time t = 0.14 s. Flame propagates from left to right.
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Fig. 2: Field of H-mole fraction for h = δf showing the flame front

curvature at time t = 0.31 s. Flame propagates from left to right.
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Fig. 3: Field of H-mole fraction for h = 3δf showing the flame front

curvature at time t = 0.06 s. Flame propagates from left to right.

Work in progress

Long-time flame evolution will be investigated by im-
plementing the formulation in a reference frame moving
with the flame. The velocity of this reference frame can be
calculated from

∫∫∫
ω̇H2

dx dy dz/(ρuYH2u
SLhLy).
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