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Introduction

The propagation of slow quasi-isobaric premixed flames be-
tween two closely spaced and adiabatic plates is studied.
The results can be of particular interest in microscale com-
bustion where the confined flow modifies the intrinsic flame
instabilities. For example, the viscosity contrast across the
flame (Saffman-Taylor instability) becomes non-negligible
for sufficiently close plates [1, 2]. We are interested to show
a simple formulation that allows the study of flame insta-
bilities at these scales.
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Fig. 1: Sketch of the Hele-Shaw cell in a cell gap of size h

Formulation

The present formulation emerges for plates sufficiently
close, that is, in the limit of small Peclet number, Pe =
h/δT << 1, where δT = DT/SL is the thermal thickness
and SL is the adiabatic flame speed. An averaging of the
conservation equations over the direction z′ perpendicular
to the plates is applied [3]. SL and δT are used as the ref-
erence scales for appropriate non-dimensionalization. The
reduced formulation is written for a global Arrhenius step
F +O → P and constant specific heat cp, and becomes
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together with the reduced Darcy’s law for the z-averaged
velocity
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, (3)

the pressure deviation field from the ambient
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−
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ρ
∇ρ ·∇p−γµ [∇ · (µ∇θ) + ω] , (4)

and the equation of state

ρ = 1/(1 + γθ). (5)

The following parameters appear: β = E(Ta− Tu)/RTa
2,

γ = (Ta − Tu)/Tu, Le = DT/DF , the buoyancy ef-
fect G, the temperature-dependent viscosity ratio in the
form µ = µ′/µu = (1 + γθ)σ and the reduced pla-
nar flame speed sL = SL/(SL)asp, where (SL)asp =
√

2LeBλb/(β2cp) (ρb/ρu) exp (−E/2RTa). The bound-
ary conditions for the reduced 2D problem (1)-(5) corre-
spond with periodic conditions at ymin and ymax, together
with p = 0 at xmin and Ux = 0 at xmax.

Results

Time-dependent computations were carried out in a
domain large enough to capture the wrinkled flame struc-
tures correctly. The initial condition was chosen in the
form of three hot spot at (x, y) = (0, 0), (0, 50), and
(0, 100).

Fig. 2: Flame front (given by isotherms contour) and flow velocity vec-

tors calculated for four differents cases.

Fig. 2 depicts four cases, where the effects of bouyancy,
viscosity contrast and differential diffusion on the flame sta-
bility have been isolated. The only effect included in case 1
as a baseline is thermal expansion. After a small period of
acceleration due to the hot-spot initial conditions, case 1
and 2 show a 4-wave mode that propagate steadily before
the occurrence of cell splitting and merging. Case 3 and 4
show a 2-wave mode propagation, although smaller wrin-
kled structures appear into the longest wrinkles in case 4
caused by the diffusive-thermal instability, as seen exper-
imentally [1]. These structures modifies the global flame
front speed, which is plotted in Fig. 3. The front speed
(ST/SL) is defined as

ST/SL =

∫∫

xy ω dx dy

Ly
,

being Ly is the length in the y component.

The baseline thermal-expansion case 1 shows
ST/ST ≈ 1.5. This value is enhanced by 30% when the
viscosity contrast is included, showing an important ef-
fect in very confined flows. Downward case 2 is slower
than upward case, but still has velocities larger than one.
Downward case 2 does stabilize the wrinkles in case 1 and
slow the front velocity. The Low Le case 4 has a drastic
effect on the front speed due to the emergence of the small
cellular-like wrinkled structures. In all cases cell splitting
and merging appears in the computations after a period of
steady propagation.
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Fig. 3: Dimensionless front speed with the reduced time.

Future work

The validity of the results obtained in the limit Pe <<
1 needs to be checked with 3D computations, where the ef-
fect of the curvature in the third coordinate z′ plays a role.
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