
Microplanificación de asignación tardía
y almacenamiento temporal

distribuidos para flujos de trabajo
intensivos en datos

Distributed Late-binding Micro-scheduling and
Data Caching for Data-Intensive Workflows

TESIS DOCTORAL
Antonio Delgado Peris

Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid

Junio 2015

Documento maquetado con TEXiS v.1.0+.

Microplanificación de asignación tardía y
almacenamiento temporal distribuidos para

flujos de trabajo intensivos en datos

Distributed Late-binding Micro-scheduling and
Data Caching for Data-Intensive Workflows

Memoria que presenta para optar al título de Doctor en Informática
Antonio Delgado Peris

Dirigida por los Doctores
José María Hernández Calama y Eduardo Huedo Cuesta

Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid

Junio 2015

Para la realización de este trabajo se utilizaron recursos facilita-
dos por el Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas, al cual expresamos nuestro agradecimiento.

Asímismo, queremos agradecer la financiación recibida desde la Sec-
retaría de Estado de Investigación, Desarrollo e Innovación a través de
los proyectos FPA2010-21638-C02-02 y FPA2013-47804-C2-1-R.

v

It might easily argued that human beings have no right to say
that this or that is impermissible; that something that is

called supernatural receives its name by arbitrary definition
out of knowledge that is finite and incomplete. [...]

Quite right, but consider this:
When we lead from ignorance, we can come to no conclusions.

When we say, Anything can happen, and anything can be,
because we know so little that we have no right to say This is
or This isn’t, then all reasoning comes to a halt right there.

We can eliminate nothing; we can assert nothing. All we can
do is put words and thoughts together on the basis of intuition
or faith or revelation and, unfortunately, no two people seem

to share the same intuition or faith or revelation.
What we must do is set rules and place limits, however

arbitrary these may seem to be. We then discover what we
can say within these rules and limits.

Isaac Asimov

A Paula y a Sandra, a Vero, a papá y mamá.

Agradecimientos

Tout a été dit, mais comme personne
n’écoute, il faut toujours répéter.

André Gide

Es tan común encontrar una sección de agradecimientos al principio de
una tesis doctoral que uno puede acabar pensando que se hace más por
costumbre, por protocolo, que por ningún otro motivo. Nada más lejos de
la realidad. La realización de una tesis es un proceso tan largo, cuesta tanto
llegar hasta el final (por unas cosas o por otras), que uno realmente tiene
mucho que agradecer amucha gente (y unas inmensas ganas de poder hacerlo
por fin). En mi caso, además, es la ocasión para corresponder a los recientes
doctores que, a lo largo de los últimos años, me han ido incluyendo en sus
reconocimientos (hecho que supone un motivo de profunda honra para mí).
Por si todo eso fuera poco, cualquier excusa es buena para poder dar las
gracias a tantas personas que realmente se lo merecen. Así que... allá voy.

Yo empecé con esto de la tesis hace ya más de seis años; dos más, incluso,
si contamos el correspondiente máster. Y el camino no siempre ha sido fácil.
Compaginar el trabajo con el doctorado ha exigido muchas horas delante de
la pantalla; tiempo robado al descanso, al ocio, a amigos y familia. Y aunque
durante todo el recorrido he disfrutado mucho y he aprendido aún más, no
han faltado los trances complicados, momentos en los que uno se pregunta
si realmente conseguirá llegar a la meta alguna vez.

Pero parece que por fin está escrita.
Y desde luego no habría podido llegar hasta aquí sin la guía y los consejos

de mis directores, Eduardo y Chema, para los que solo puedo tener buenas
palabras. Chema, con quien comparto, no solo la tesis, sino la rutina de CMS
y muchas charlas de pasillo, y de cuyas palabras y sus formas de hacer llevo
aprendiendo tanto tiempo ya. Eduardo, sin cuya perspectiva y cuya dirección
a través de los casi insondables caminos de la publicación científica y las
tramitaciones académicas nunca habría concluido esta aventura con éxito.
Por supuesto, también he de agradecer la ayuda de Khawar y los demás
colaboradores de las primeras etapas del proyecto del Task Queue.

También imprescindible ha sido el apoyo de mis compañeros de com-
putación (rara avis en nuestro departamento). En primer lugar, Javier,
quien, no solo me ha ayudado infinitas veces, cada día, tanto en lo refe-
rente a la tesis como fuera de ella, sino que se ha apresurado a liberarme

ix

x Agradecimientos

de trabajo, echándoselo sobre sus espaldas, en las fases en las que las exi-
gencias del doctorado minaban mi dedicación a otras tareas. Desde luego,
de no ser por él, no estarías leyendo estas líneas. También le estoy agrade-
cido a Nica por, no solo permitirme, sino animarme a embarcarme en esta
empresa, y por compartir su experiencia. A Miguel, por sus innumerables y
bien aprovechados consejos. A Juanjo, por echar una mano siempre que ha
hecho falta. Y a todos ellos (y a Raúl y Jaime), por su talante y por hacer
más fácil y más ameno el trabajo diario.

A partir de ahí, la lista de colegas ciemateros a los que debo gratitud
es tan larga que no voy a intentar mencionarlos a todos. En este tiempo
he convivido con un gran número de compañeros, muchos estudiantes, y un
buen puñado de ellos hoy ya doctores. Todos han contribuido a hacer mi
camino indescriptiblemente más agradable. Los incontables cafés y comidas,
el deporte y la montaña, los cines, las cenas, los premios de navidad, los
momentos de risas y las conversaciones estimulantes. No tengo dudas de que
la experiencia compartida con ellos es lo más valioso de todo este periplo.
Así que, en fin, muchas gracias a todos, allá donde estéis, ya sea Ginebra
o Hamburgo, Río de Janeiro o Chicago, Quito o Zúrich. Y, por supuesto,
gracias a los que resisten todavía por Madrid, dentro o fuera del CIEMAT
(incluido, sí, el otro perenne, con quien tantas andanzas he vivido ya).

Fuera del entorno laboral, me gustaría recordar a la gente que me ha
sufrido todos estos años, incluso desde antes de comenzar la tesis, y que
hacen la vida más dulce. A los ibmeros y los (ex-)cernícolas, a mis compis
de piso (de Pablo a Shu, pasando por Mikel y Bea, y, por supuesto, Javi)
y a la gente de Valencia a la que veo mucho menos de lo que querría y
que algo habrán tenido que ver en todo esto (Boro, Cuñi, Josemi, Óscar,
Juanfran, Mario, MC... y todos los demás). A ellos y a todos los que olvido.
Pero no quiero cerrar el párrafo sin mencionar a mi profe de mates de octavo
(por descubrirme la programación), a Vicente (por su excel), a Andreu (por
mucho más que por ser un pesado), a Wisconsin (por no ser Groenlandia)
y a Michael (porque me apetece).

Y ya solo me restan los más importantes. Mi familia; en Málaga, Valencia
y Madrid. A todos ellos sin excepción, pero dejadme nombrar a mis abuelas,
Carmen y Vicenta, que ojalá estuvieran, a mi tía Paquita, a la que adoro,
a Sandra y a Paula, las mejores hermanas que nadie pueda soñar y, por
supuesto, a papá, por todo. A ellos y a Vero, que fue la primera en leer
estas páginas (pobrecita) y que ha soportado mis dudas y lamentos más
que nadie, pero que, a pesar de todo, sigue caminando conmigo, mano sobre
mano, iluminando el trayecto a cada paso. Por último, a mamá, la persona
que más culpa tiene de que haya llegado hasta aquí, no solo por el detalle de
haberme engendrado sino por ayudarme y estimularme desde siempre, por
darme apoyo y cariño sin mesura, por su sabiduría, su alegría y su pasión.

Muchas gracias.

Abstract

Today’s world is flooded with vast amounts of digital information coming
from innumerable sources. Moreover, it seems clear that this trend will only
intensify in the future. Industry, society and—remarkably—science are not
indifferent to this fact. On the contrary, they are struggling to get the most
out of this data, which means that they need to capture, transfer, store and
process it in a timely and efficient manner, using a wide range of computa-
tional resources. And this task is not always simple. A very representative
example of the challenges posed by the management and processing of large
quantities of data is that of the Large Hadron Collider experiments, which
handle tens of petabytes of physics information every year. Based on the
experience of one of these collaborations, we have studied the main issues
involved in the management of huge volumes of data and in the completion
of sizeable workflows that consume it.

In this context, we have developed a general-purpose architecture for
the scheduling and execution of workflows with heavy data requirements:
the Task Queue. This new system builds on the late-binding overlay model,
which has helped experiments to successfully overcome the problems asso-
ciated to the heterogeneity and complexity of large computational grids.
Our proposal introduces several enhancements to the existing systems. The
execution agents of the Task Queue architecture share a Distributed Hash
Table (DHT) and perform job matching and assignment cooperatively. In
this way, scalability problems of centralized matching algorithms are avoided
and workflow execution times are improved. Scalability makes fine-grained
micro-scheduling possible and enables new functionalities, like the imple-
mentation of a distributed data cache on the execution nodes and the in-
tegration of data location information in the scheduling decisions. This im-
proves the efficiency of data processing and helps alleviate the commonly
congested grid storage services. In addition, our system is more resilient to
problems in the central server and behaves better in scenarios with demand-
ing data access patterns or with no local storage service available, as an
extensive set of assessment tests has proven.

Since our distributed task scheduling procedure requires the use of broad-
cast messages, we have also performed an exhaustive study of the possible

xi

xii Abstract

approaches to implement this operation on top of the Kademlia DHT, which
was already used for the shared data cache. Kademlia provided individual
node routing but no broadcast primitive. Our work exposes the particular-
ities of this system, notably its XOR-based distance metrics, and analyti-
cally studies which broadcasting techniques can be applied to it. A model
that estimates node coverage as a function of the probability that individual
messages reach their destination has also been developed. For validation, the
algorithms have been implemented and comprehensively evaluated. More-
over, several techniques are proposed to enhance the bare protocols when
adverse circumstances such as churn and failure rate conditions are present.
These include redundancy, resubmissions or flooding, and also combinations
of those. An analysis of the strengths and weaknesses of algorithms and
additional techniques is presented.

Resumen

El mundo de hoy en día se encuentra inundado por ingentes cantidades
de información digital procedente de muy diversas fuentes. Todo apunta,
además, a que esta tendencia se agudizará en el futuro. Ni la industria, ni
la sociedad en general, ni, muy particularmente, la ciencia, permanecen in-
diferentes ante este hecho. Al contrario, se esfuerzan por obtener el máximo
provecho de esta información, lo que significa que deben capturarla, trans-
ferirla, almacenarla y procesarla puntual y eficientemente, utilizando una
amplia gama de recursos computacionales. Pero esta tarea no es siempre
sencilla. Un ejemplo representativo de los desafíos que suponen el manejo
y procesamiento de grandes cantidades de datos es el de los experimentos
de física de partículas del Large Hadron Collider (LHC), en Ginebra, que
cada año deben gestionar decenas de petabytes de información. Basándonos
en la experiencia de una de estas colaboraciones, hemos estudiado los prin-
cipales problemas relativos a la gestión de volúmenes de datos masivos y a
la ejecución de vastos flujos de trabajo que necesitan consumirlos.

En este contexto, hemos desarrollado una arquitectura de propósito ge-
neral para la planificación y ejecución de flujos de trabajo con importantes
requisitos de datos, que hemos llamado Task Queue. Este nuevo sistema
aprovecha el modelo de asignación tardía basado en agentes que ha ayu-
dado a los experimentos del LHC a superar los problemas asociados con
la heterogeneidad y la complejidad de las grandes infraestructuras grid de
computación. Nuestra propuesta presenta varias mejoras con respecto a los
sistemas existentes. Los agentes de ejecución de la arquitectura Task Queue
comparten una tabla hash distribuida (Distributed Hash Table, DHT) y re-
alizan la asignación de tareas de una manera cooperativa. De esta forma,
se evitan los problemas de escalabilidad de los algoritmos centralizados de
asignación y se mejoran los tiempos de ejecución. Esta escalabilidad nos per-
mite realizar una microplanificación de grano fino lo cual posibilita nuevas
funcionalidades, como la implementación de una cache distribuida en los
nodos de ejecución y el uso de la información de ubicación de los datos en
las decisiones de asignación de tareas. Esto mejora la eficiencia del proce-
sado de datos y ayuda a aliviar los habitualmente congestionados servicios
de almacenamiento del grid. Además, nuestro sistema es más robusto frente

xiii

xiv Resumen

a problemas en la interacción con la cola central de tareas y ofrece mejor
comportamiento en situaciones con patrones de acceso a datos exigentes o
en ausencia de servicios de almacenamiento locales. Todo esto ha sido de-
mostrado en una amplia serie de pruebas de evaluación.

Dado que nuestro procedimiento de planificación de tareas distribuido
requiere el uso de mensajes de broadcast, también hemos realizado un pro-
fundo estudio de las posibles aproximaciones a la implementación de esta
operación sobre el DHT Kademlia, el cual es utilizado para la cache de
datos compartida. Kademlia ofrece enrutamiento a nodos individuales pero
no incluye ninguna primitiva de broadcast. Nuestro trabajo expone las pecu-
liaridades de este sistema, particularmente su métrica basada en la operación
XOR, y estudia analíticamente qué técnicas de broadcast pueden ser usadas
con él. También se ha desarrollado un modelo que estima la cobertura de
nodos en función de la probabilidad que cada mensaje individual alcance su
destino correctamente. Como validación, los algoritmos se han implementa-
do y se han evaluado exhaustivamente. Además, proponemos varias técnicas
para mejorar los protocolos en situaciones adversas, por ejemplo cuando el
sistema presenta una alta rotación de nodos o la tasa de error en las entregas
no es despreciable. Esta técnicas incluyen redundancia, reenvío e inundación
(flooding), así como combinaciones de las mismas. Presentamos un análisis
de las fortalezas y debilidades de los diferentes algoritmos y las mencionadas
técnicas complementarias.

Publications and Personal
Contribution

The work on this thesis has led to the publication of several articles.

Material discussed in Chapter 6 was published in the following articles:

A. Afaq, B. Bockelman et al. The Evolution of the Data Loca-
tion Service in CMS. In 3rd Iberian Grid Infrastructure Conference
Proceedings, pp. 189–200. Netbiblo, 2010.

A. Delgado Peris, J. Hernández and E. Huedo Data Location-
aware Job Scheduling in the Grid. Application to the GridWay Metasched-
uler. In Journal of Physics: Conference Series, vol. 219, p. 062043. IOP
Publishing, 2010.

Most of the contents of Chapter 7 were published in:

K. Hasham, A. Delgado Peris et al. CMS Workflow Execution Us-
ing Intelligent Job Scheduling and Data Access Strategies. IEEE Trans-
actions on Nuclear Science, vol. 58(3), pp. 1221–1232, IEEE, 2011.

Large parts of Chapter 9 were included in the following papers:

A. Delgado Peris, J. M. Hernández and E. Huedo. Evaluation
of the Broadcast Operation in Kademlia. In IEEE 14th Intl. Conf.
on High Performance Computing and Communication & IEEE 9th
Intl. Conf. on Embedded Software and Systems (HPCC-ICESS), pp.
756–763. IEEE Computer Society, 2012.

A. Delgado Peris, J. M. Hernández and E. Huedo. Evalua-
tion of Alternatives for the Broadcast Operation in Kademlia under
Churn. Peer-to-Peer Networking and Applications. Springer, 2015.
DOI: http://dx.doi.org/10.1007/s12083-015-0338-y

xv

http://dx.doi.org/10.1007/s12083-015-0338-y

xvi Publications and Personal Contribution

Chapter 10 was partly built using the material originally appeared in:

A. Delgado Peris, J. M. Hernández and E. Huedo. Distribut-
ed Scheduling and Data Sharing in Late-binding Overlays. In High
Performance Computing Simulation (HPCS), 2014 Intl. Conf. on, pp.
129–136, July 2014.

In addition, a new article has been submitted and it is currently being
revised. This paper includes work discussed in Chapters 5, 8 and 10:

A. Delgado Peris, J. M. Hernández and E. Huedo. Distributed
Late-binding Scheduling and Cooperative Data Caching. Submitted to
Journal of Grid Computing.

Personal contribution

During the time I have been working on this thesis, I have been certainly
assisted with the advise and support of many different people and, most
especially, my supervisors and the other co-authors of the previously listed
articles. However, I am the main responsible for all the material presented
throughout the thesis and in the articles listed above (including the writing
of the articles themselves).

The only partial exception to this statement is the work discussed in
the article CMS Workflow Execution Using Intelligent Job Scheduling and
Data Access Strategies (and the related Chapter 7), which was produced
in close cooperation with Kawhar Hasham. This was the first phase of the
design and implementation of the Task Queue system (when it still used a
centralized matching architecture).

Table of Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research Objectives . 2
1.3. Organization of the Document 3

I Large-scale Distributed Data-intensive Computing 5

2. Large-scale Computing 7
2.1. The Grid . 8

2.1.1. The Grid Vision . 8
2.1.2. Grid Middleware . 10
2.1.3. The Worldwide LHC Computing Grid 11

2.2. The Cloud . 16
2.2.1. What is the Cloud . 16
2.2.2. Cloud Computing for Scientific Research 18

2.3. Big Data . 19
2.3.1. It is the Data . 20

3. Workload and Data Management 23
3.1. Workload Execution . 24

3.1.1. Traditional Grid Brokering 24
3.1.2. Late-binding Pilot Overlays 27

3.2. Data Management . 30
3.2.1. Storage Elements . 30
3.2.2. Data Distribution . 31

3.3. Data-intensive Scheduling . 32
3.3.1. Grid Scheduling . 33
3.3.2. Cluster Scheduling . 34

3.4. Trends . 36
3.4.1. Mainstream Products 36

xvii

xviii Table of Contents

3.4.2. Scientific Computing 38

4. Distributed Hash Tables 41
4.1. DHTs . 42

4.1.1. General Description 42
4.1.2. Applications . 43
4.1.3. Examples . 43

4.2. Kademlia . 45
4.3. Broadcasting in DHTs . 47

4.3.1. Partition-based Broadcasting 47
4.3.2. Prefix-based Broadcasting 48
4.3.3. Related Work on Kademlia Broadcasting 49

4.4. Churn and Failure Rate . 50
4.5. Evaluation Metrics . 50

II Architectures for Efficient Data Access 53

5. Evaluation of Data Access and Task Binding 55
5.1. Data Access . 56

5.1.1. Collocating Jobs and Data 56
5.1.2. Accessing Storage Elements Data 56
5.1.3. Pilots Data Cache . 57

5.2. Early-binding vs Late-binding 57
5.2.1. Modelling Early- and Late-binding Approaches 58
5.2.2. Workload Throughput Considerations 62

5.3. Intelligent Micro-Scheduling 65

6. Data-location Aware Scheduling 67
6.1. Data Location Awareness . 67

6.1.1. Data Replication and Management 69
6.2. The GridWay Meta-scheduler 70

6.2.1. Data-location Aware GridWay 70
6.3. Evaluation . 71

6.3.1. Delay Introduced by the Catalogue Queries 71
6.3.2. Application of Different Scheduling Policies 72

6.4. Coordinated Workflow and Data Placement 75
6.4.1. Data Placement System 75
6.4.2. Workflow Management System 76
6.4.3. Decoupled Systems . 78

7. Late-binding Overlay 79

Table of Contents xix

7.1. The Task Queue Architecture 80
7.1.1. Overview . 80
7.1.2. Pilot Management . 82
7.1.3. Pilot Job Operation 82

7.2. Data Caching . 83
7.2.1. Per-host Cache Sharing 84

7.3. Job Matching. Micro-scheduling 84
7.3.1. Micro-scheduling in the TQ Architecture 85

7.4. Evaluation . 86
7.4.1. Tier-0 Tests . 86
7.4.2. CIEMAT Tests . 88

III DHT-based Late-binding Scheduling and Data Shar-
ing 97

8. Evaluation of Data Caching and Centralized Scheduling 99
8.1. Distributed Data Caching . 99
8.2. Scheduling Overhead . 100

8.2.1. Impact of Scheduling Delay: Optimal Task Length . . 101
8.3. Pilots Autonomy . 103
8.4. Micro-scheduling and Global Rank 104

9. Broadcasting in Kademlia 105
9.1. Particularities of Kademlia 105
9.2. Existing Protocols . 106

9.2.1. Partition-based Broadcasting 106
9.2.2. Prefix-based Broadcasting 107

9.3. Bucket-based Broadcasting 107
9.3.1. Demonstration for the Bucket-based Broadcasting . . 108

9.4. Fighting Churn . 109
9.4.1. Expected Coverage Under Failure Conditions 109
9.4.2. Empty Regions Re-assignment 113
9.4.3. Redundancy . 113
9.4.4. Direct ACKs and Resubmissions 115
9.4.5. Other Churn Fighting Techniques 116

9.5. Evaluation . 117
9.5.1. Testbed and Setup . 117
9.5.2. Coverage under Different Conditions 118
9.5.3. Other Metrics . 120
9.5.4. Summary of Algorithms Evaluation 123

xx Table of Contents

10.Distributed Data Caching and Job Matching 125
10.1. Custom Kademlia Implementation 126
10.2. Distributed Data Caching . 126
10.3. Distributed Job Matching . 127

10.3.1. Task Matching and Ranking 129
10.4. Evaluation . 130

10.4.1. Pressure on Task Queue and Scheduling Overhead . . 131
10.4.2. Cache Hit Ratio . 134
10.4.3. Distributed Matching Ranking 136
10.4.4. Pilots Autonomy from Task Queue 141

10.5. Other Tests . 145
10.5.1. Task Length and Workflow Turnaround Time 145
10.5.2. Data Access Patterns 146
10.5.3. Operation in a SE-less Resource Center 149

IV Conclusions 153

11.Conclusions 155
11.1. Conclusions . 155
11.2. Outlook and Future Work . 156

V Appendices 159

A. Implementation and Architecture Details 161
A.1. Complete Task Queue Architecture 161
A.2. Task Queue Internals . 164
A.3. Pilot Release Algorithm and Thresholds 165

A.3.1. Pilot Release Algorithm 165
A.3.2. Site Thresholds . 166

A.4. Pilots Internals . 167
A.5. DHT Testbed Internals . 169
A.6. Non-CMS Testbed Internals 171

Resumen en español 173

List of Acronyms 179

Bibliography 183

List of Figures

2.1. Service architecture in the Worldwide LHC Computing Grid. . 14
2.2. Search volume for grid computing, cloud computing and big da-

ta. Source: Google trends (http://www.google.com/trends),
accessed on January 4th, 2015. 18

2.3. Gartner’s hype cycle for 2014. Source: http://www.gartner.
com/. 21

3.1. Traditional scheduling of grid computing jobs. 25
3.2. Late-binding task scheduling using an overlay of pilot jobs. . . 27

4.1. Chord buckets and binary tree for 16 nodes. 44
4.2. Kademlia buckets and binary tree for 16 nodes. 46
4.3. Balanced and unbalanced broadcasting for a network of 16

nodes. 49

5.1. General model for task execution on grid slots. 58
5.2. Early-binding model for workflow execution on the grid. . . . 59
5.3. Late-binding model for workflow execution on the grid. 60
5.4. Discrete model for workflow execution on the grid. 61
5.5. Workload throughput model on early-binding approach. . . . 63
5.6. Workload throughput model on late-binding approach. 64

6.1. Transfer completion times for various source and destination
types. 68

6.2. Activity diagram for the resolution of the HAS_CLOSE_DATA
function in GridWay. 72

6.3. Match-making delay in GridWay when catalog queries are added. 73
6.4. Match-making delay compared to job submission delay. 73
6.5. Selected site as a function of input data size. 74
6.6. Turnaround job time by policy. 75
6.7. Integration of a data placement system as information source

for GridWay. 76

xxi

http://www.google.com/trends
http://www.gartner.com/
http://www.gartner.com/

xxii List of Figures

6.8. Coordinated scheduling of jobs and data using a workflow
management system. 77

7.1. Overview of the Task Queue architecture. 81
7.2. Turnaround time for traditional submission and new Task

Queue. 87
7.3. Architecture of the non-CMS Task Queue testbed, at CIEMAT. 89
7.4. Running jobs vs. time for different submission systems (W3

workflow). 91
7.5. Average job execution and stage-in time under different SE

conditions, with and without data caching (W1 workflow). . . 92
7.6. Workflow turnaround time, under different SE conditions, with

and without data caching (W1 workflow). 93
7.7. Average job execution and stage-in time for different workflow

types, under bad SE conditions (d3f3), with and without data
caching. 94

7.8. Workflow turnaround time for different workflow types, under
high SE load conditions (d3f3), with and without data caching. 95

7.9. Hit ratio for different cache configurations and workflow types. 96

8.1. Workload throughput model on early-binding approach. . . . 103

9.1. Partition-based broadcasting trees for with λ = 3 and λ = 4. . 107
9.2. Broadcast trees for a network of 16 nodes. 110
9.3. Gain in node coverage when applying ERR. 113
9.4. Paths interference when using redundancy with R1-F1 policy. 115
9.5. Duplicated messages when using ACK and resubmissions. . . 116
9.6. Node coverage (%) by protocol with different configurations. . 119
9.7. Other metrics for different protocols and configurations. . . . 121

10.1. Simplified diagram of the distributed scheduling process. . . . 128
10.2. Number of TQ requests per architecture and testbed size. . . 132
10.3. Inter-tasks delay per architecture and testbed size. 132
10.4. Turnaround workflow time per architecture and testbed size. . 133
10.5. Pre-DHT architecture: slot occupancy and cumulative TQ re-

quests (top), inter-tasks delay and requests queue (bottom). . 134
10.6. Distributed architecture: slot occupancy and cumulative TQ

requests (top), inter-tasks delay and requests queue (bottom). 135
10.7. Distributed cache hit ratio per architecture and testbed size. . 136
10.8. Local cache hit ratio per architecture and testbed size. 137
10.9. Local cache hit ratio per type of workflow and testbed size. . . 137
10.10. Rank score for different matrix sizes using random values. . . 139
10.11. Algorithm delay for different matrix sizes using random values. 139

List of Figures xxiii

10.12. Rank score for different matrix sizes using realistic values. . . 140
10.13. Algorithm delay for different matrix sizes using realistic values. 141
10.14. Enhanced distributed scheduling process. 142
10.15. Slot occupancy on TQ disconnections with old architecture. . 143
10.16. Slot occupancy on TQ disconnections with new architecture. . 144
10.17. Workflow turnaround time for different configurations and TQ

disconnection conditions. 144
10.18. Read distribution for different cache configurations. 148
10.19. Distribution of files served per pilot with centralized matching. 148
10.20. Distribution of files served per pilot with distributed matching. 149
10.21. Distribution of read operations for different cache configurations.151
10.22. Workflow turnaround time vs remote processing inefficiency

for different cache configurations. 152

A.1. Integration of the Task Queue with the existing CMS submis-
sion system. 163

A.2. Diagram of classes and threads of the Task Queue. 164
A.3. Internal architecture of the pilot agents. 168
A.4. Architecture of the testbed used in the evaluation of the DHT

broadcast algorithms. 170
A.5. Components of the non-CMS Task Queue testbed at CIEMAT. 172

List of Tables

6.1. Policies. 74
6.2. Average job time by policy. 75

7.1. Combination of delays and failure factors. 90

8.1. Optimal task length and workflow turnaround time (seconds). 103

9.1. Theoretical coverage per type of broadcast. 112
9.2. Nodes per level and coverage for 1,000 nodes. 112
9.3. Nodes per level by configuration for PB-2 and 1,000 nodes. . 123

xxv

Chapter 1

Introduction

1.1. Motivation

Everyday, more and more people spend hours in social networking sites,
upload pictures to some sharing website, watch videos online or play video
games over the network. The number of Internet-capable portable devices
rises continuously and so does the number of pixels per inch of digital cam-
eras. Advances in digital sensors, communications, computation and storage
make it possible to produce, transfer and store ever increasing volumes of da-
ta. Also in the business domain, we can find countless examples of activities
generating large amounts of data: online shopping, recording of transactions
at point-of-sale terminals or analysis of activity patterns on cloud-based
services.

This pattern of data superabundance is also found in the scientific do-
main. Astronomers process telescope data to produce sky mosaics and exam-
ine the structure of the galaxies. Bioinformaticians and medical researchers
study large samples of magnetic resonance images, genome sequences and
protein structure databases in order to reach a better understanding of the
causes of diseases and to create more effective means of diagnosis and treat-
ment. In meteorology and earth science, sensor measurements are key to
understand the complex interactions of the different agents and to make
more accurate predictions [1, 2].

Maybe the most representative example of this trend is the field of high
energy physics and, in particular, the LHC (Large Hadron Collider). The
collisions occurring at the accelerator, at Geneva, generate several petabytes
of data annually. This data must be timely stored and replicated to com-
puting centres around the world for processing and further archival. The
processed products must be carefully analyzed to extract physics results
on the laws that govern nature at the microscopic level. The infrastructure
used to satisfy the storage and processing requirements of the LHC is called
WLCG (Woldwide LHC Computing Grid), which is currently the world’s

1

2 Chapter 1. Introduction

largest computational grid.
Our work was originally motivated by the observation of the congestion

problems suffered by one of the LHC experiments, CMS (Compact Muon
Solenoid), when running large workflows that consumed extensive amounts
of data. This resulted in longer workload completion times and inefficient
use of storage and processing resources. We initiated a research to better
understand the challenges that the execution of data-intensive workflows in
WLCG entails and produce a more effective architecture to deal with them.

1.2. Research Objectives

The main objective of this thesis is the study of the scheduling and exe-
cution of large data-intensive workflows on distributed computing resources
and the development of a new architecture to improve their performance
(both regarding completion times and data access). In addition, since broad-
casting was required for the new system, an analysis of this operation on top
of the Kademlia DHT (Distributed Hash Table) also became a major target
for our work.

More specifically, the main research objectives addressed by this thesis
are the following:

Study the problem of data-intensive scheduling in distributed comput-
ing resources.

Since they are the current state of the art for workload management
in WLCG, analyze the operation of late-binding overlay architectures,
their advantages and the challenges they face.

Propose a way to improve data access efficiency and protect massive
storage systems: a distributed data cache.

Propose an advanced scheduling system that enables the use of data
location information in the scheduling decisions: micro-scheduling.

Develop an effective and scalable procedure to perform these schedul-
ing: DHT-based cooperative algorithm.

Study existing and new algorithms to perform the broadcast operation
in the Kademlia DHT.

Evaluate the risks associated to churn and loss of messages when prop-
agating broadcasts in Kademlia. Propose and assess techniques to over-
come these problems.

Implement a broadcast-capable network that satisfies the needs of our
architecture.

1.3. Organization of the Document 3

Implement the complete architecture with distributed data cache and
task scheduling and carry out a comprehensive evaluation of its func-
tionality and performance in different conditions.

1.3. Organization of the Document

This document is divided in four main parts and one appendices section.
Part I introduces the issues dealt with by this thesis and reviews related

work. Chapter 2 sets the context of data abundance that we are experienc-
ing in recent times and presents the main technologies and infrastructures
used for massive distributed computing today. Chapter 3 examines work-
load and data management in WLCG, providing a detailed comparison of
traditional job scheduling and the new late-binding paradigms and review-
ing academic and commercial approaches to the execution of data-intensive
workflows. Chapter 4 discusses DHT systems, particularly Kademlia, and
mentions existing proposals to add broadcast capabilities to theses systems.

Part II delves into the problem of executing data-intensive workloads.
Chapter 5 summarizes the specific problems of data access and scheduling
overhead and outlines our proposals for data caching and micro-scheduling.
Chapter 6 shows the importance of data-location awareness when scheduling
workloads with heavy data requirements and discusses our early work on
this topic. Chapter 7 presents and evaluates the Task Queue architecture,
a new late-binding overlay system enhanced with data caching and micro-
scheduling.

Part III discusses the introduction of DHT technologies to achieve a more
effective distributed data cache and a scalable cooperative task scheduling
and assignment procedure. Chapter 8 reviews the weaknesses shown by the
original Task Queue architecture and motivates the need for a new distribut-
ed approach. Chapter 9 provides a deep study of the broadcast operation
in the Kademlia DHT, which is required for our distributed matching al-
gorithm. Chapter 10 presents our final architecture and shows a complete
series of tests that validate its functionality and performance.

Finally, Part IV discusses the conclusions of the thesis and Appendix A
provides some additional information on the details of the internal architec-
ture and implementation of some systems discussed throughout the docu-
ment.

Part I

Large-scale Distributed
Data-intensive Computing

Chapter 2

Large-scale Computing

Modern science needs massive computing. Today’s research produces
ever increasing volumes of data, which require higher and higher processing,
transferring and storing capabilities. It has been stated that computation
has become an established third branch of science, alongside theory and
experiment, and this use of computer technology in scientific investigation
has been called e-science [3].

In order to fulfill their enormous computing requirements, scientists use
a wide range of distributed computing infrastructures, from computing clus-
ters and GPU (Graphics Processing Unit) processors to grids, clouds and
volunteer computing systems. Moreover, scientists often need to exploit re-
mote databases and repositories. Frequently, research collaborations incor-
porate members from many different institutions from all over the world.
The distributed structure of the community itself encourages the integra-
tion of scattered computational resources (those provided by the partici-
pating centres) and makes it necessary for the key services to be accessible
by remote collaborators, which implies that the proper authentication and
authorization mechanisms must be in place.

Large-scale grids for scientific computing, discussed in Section 2.1, prob-
ably constitute the most dramatic example of a complex distributed com-
puting system. They comprise heterogeneous resource centres (sites) spread
under multiple administrative domains and interconnected by complex net-
work infrastructures, where high latencies are not uncommon. In such sys-
tems, applications must deal with multiple interfaces, highly heterogeneous
execution environments, dynamic number of available resources and routine
component failures and maintenance downtimes.

The cloud came as a commercial alternative to (and an evolution of)
the grid. With a marked accent on ease of use, the introduction of power-
ful virtualization techniques and, perhaps, somewhat less ambitious goals,
cloud computing has been more successful than the grid (by which it was
probably inspired) in attracting companies and consumers attention but it

7

8 Chapter 2. Large-scale Computing

is also being used for scientific research. We will discuss cloud computing in
Section 2.2.

More generally, data is being generated by everything around us—sensors,
cameras, smartphones, tablets, computers—at all times and the world is now
trying to extract knowledge out of it—identifying patterns and trends, eval-
uating risks, understanding opportunities and threats. We live in the era of
big data and the task of managing and analyzing this information requires
large resource pools and demands new computing paradigms. Section 2.3
introduces big data and its relation to data-intensive computing research.

2.1. The Grid

2.1.1. The Grid Vision

The grid1 vision was presented in 1999 [4]. Since that moment and for
several years, grid computing was one of the most active fields of research,
especially in academia. Countless research articles were published on the
subject and numerous grid-related projects were initiated. To give just a
couple of examples of the attention received by the domain, in 2003, the MIT
Technology Review named it as one of the 10 technologies that would change
our world [5]; also, Grid computing has been hailed as the next revolution
after the Internet and the World Wide Web [6].

During those years (and still today), the grid term was used in a variety of
contexts and its meaning was not always consistent. In reality, the grid idea
never referred to a concrete, well-defined technology, but rather, the vision of
a new computing paradigm, encompassing concepts such as metacomputing
and utility computing.

The first one refers to the integration of multiple computing resources for
a particular application (going beyond individual supercomputers or even
clusters). This goal derives from the observation that some projects cannot
be fulfilled with local resources alone. While HPC (High Performance Com-
puting) applications have very demanding needs with require special hard-
ware (supercomputers), others, HTC (High Throughput Computing) applica-
tions, can be parallelized to utilize large amounts of commodity computers.
Grid technologies should enable this sharing of computing resources from
different sources.

The second concept—utility computing—was proposed as soon as 1966
1In the literature, the term grid is sometimes capitalized. The reasons for this are

probably twofold: firstly, it is a way to distinguish it from the traditional uses of the word;
secondly, because there was once the idea that at some point there would be a single
Grid—much like there is an Internet—so it could be regarded as a proper noun. The same
can be said of the the cloud. The reality, however, is that there is currently no integrated
grid or cloud, but multiplicity of technologies and infrastructures. Therefore, we see no
reason to capitalize such words and we will use the lowercase form throughout the text.

2.1. The Grid 9

and suggests that computing resources be provisioned by external service
providers and their consumption charged for specific usage (like gas or water
supplies) [7]. Actually, the word grid was chosen as an analogy to the electric
grid, in which consumers of computing power would not necessarily own
their resources (like they do not own an electric generator) but acquire it
from external providers using the data communication networks (like the
electricity is received through power cables). In this model, consumers do
not need to own the means required to satisfy their peak computing needs
but can rent them from the external providers when desired. Moreover,
these resources will typically be better managed, more secure and, thanks
to economies of scale, might even be cheaper than those that they could buy
by themselves.

Even if it is not easy to provide a concise, concrete and widely accepted
definition of what grid computing is (and what is not), we believe that it is
more practical to focus on the deployed grid infrastructures and the devel-
oped grid technologies. In general terms, we can say that a grid infrastruc-
ture is a dynamically changing set of computing resources distributed among
different administrative domains and that grid technologies are those tools
and techniques that enable users to select, access and aggregate those re-
sources in a seamless and secure way, using standard, open, general-purpose
protocols and interfaces. Consumers of these resources are individuals and
institutions grouped in what has been called VO (Virtual Organization).
Each VO acts according to well-defined rules stating which grid resources
are shared and who is allowed to access them and under which conditions
[8, 9, 10].

The last part of the definition above, using standard, open, general-
purpose protocols and interfaces, tries to separate grid computing from pro-
prietary solutions. Vigorous efforts were performed in this respect, but, while
the initial grid reference implementation, the Globus project [11], achieved
great success and became the de facto standard for grid protocols (at least
for some time), subsequent attempts of several organizations to define open
grid standards did not really achieve widespread adoption [12]. In the search
of efficiency or usability, different communities (and projects) ended up de-
veloping different solutions, often incompatible or of application to their
particular domain only.

The vision of a global interoperable grid where only defined authorization
policies limit access to innumerable resources worldwide was never reached.
Moreover, the grid technologies and concepts, generally regarded as imma-
ture or too complicated for the average need2, did not really find great
acceptance outside the academic circles. Nevertheless, as of now, the Globus
project still provides grid services to researchers around the world and several

2This should not be surprising, since these technologies were originated and evolved to
satisfy the needs of the highly specialized HTC community.

10 Chapter 2. Large-scale Computing

large grid infrastructures devote their vast computing resources to scientific
activities [13]. The most prominent examples of the latter are EGI (European
Grid Infrastructure) [14], OSG (Open Science Grid) [15] and WLCG (Wold-
wide LHC Computing Grid) [16], which we will cover in more depth in
Section 2.1.3.

Today, the buzz surrounding grid computing has disappeared. However, a
new paradigm, to certain degree inspired by the former, has come to replace
it: cloud computing. We will discuss this in Section 2.2.

2.1.2. Grid Middleware

The definition of grid that we have presented is general enough to leave
space for virtually any type of computing resource to be shared; e.g., pro-
cessing power, storage capacity, datasets or remote harnessing of any kind of
scientific instrumentation. But even for a single type of resource, several dif-
ferent implementations may exist, possibly offering incompatible interfaces;
especially since resources usually belong to different administrative domains.
Such situations make it often impossible for an application to directly access
all available resources in a seamless way. To fix this, a single interface must
be defined for each type of resources. Through this uniform interface, any of
the implementations can be accessed. But this is not enough, resources must
also be advertised, using a coherent description schema, so that consumers
can discover the existing services and choose the one they prefer. Finally,
authentication, authorization and usage policies for users and services must
be enforced at all times.

The software that provides the means to describe, discover and use avail-
able resources in a secure way, thus providing the backbone to the grid, is
usually called grid middleware [8]. In order to enable sharing of any kind
of resource, the middleware should make use of standard, open, general-
purpose protocols and interfaces. This is opposite to application-specific
solutions, but in fact, the latter are sometimes more easily realizable or can
be more efficient, so they are commonly preferred for real applications. In
practice, a mixture of general-purpose and specific products may be found
in existing grid infrastructures.

The Globus Toolkit, released by the Globus project, was the first middle-
ware implementation and soon became the reference. Its architecture follows
the hourglass model: a small set of core abstractions and protocols are at
the neck of the hourglass, while many different supported resources are at
the bottom and numerous applications can be built upon them (top of the
hourglass). The services offered by the Globus Toolkit include, amongst
others, resource monitoring and discovery services, resource allocation and
management, a public key security infrastructure and secure and scalable
file transfer services (the GridFTP protocol). Despite the success of the ini-
tial versions of the Globus Toolkit, subsequent releases using stateful web

2.1. The Grid 11

services, following the OGSA (Open Grid Services Architecture) model [12],
did not achieve the same popularity.

A variety of middleware breeds, mostly built upon Globus, were devel-
oped within different research projects and organizations. They were meant
to extend functionalities of the Globus Toolkit (based on the needs of par-
ticular communities) or to improve its performance. A remarkable example
is the software produced under the umbrella of different European research
projects, with the purpose of serving the European and international re-
search community. Such middleware has been released with several differ-
ent names throughout the years. Its current designation is EMI (European
Middleware Initiative) [17], used in EGI and the different European NGIs
(National Grid Initiatives). One important characteristic of EMI and its an-
cestors is that, in contrast to the bare Globus tools, it devotes great attention
to data storage and management issues. This is due to the importance of the
high energy physics experiments, known to manage large amounts of data,
within EMI.

Without dismissing traditional grid middleware, like EMI and Globus,
the current trends within the most important science grid infrastructures,
EGI and OSG, are both to incorporate mainstream protocol and technologies
as much as possible (e.g., making use of standard NFS or HTTP protocols
for data handling, instead of possible grid alternatives [18]) and to make use
of any product whose performance is desirable, even if this does not really
adhere to open grid standards (this may be the case of some uses of HT-
Condor [19] for job execution or of the xrootd [20] protocol for remote data
access). This is possible in these research communities that, although not
small, are well organized and, relatively speaking, not very heterogeneous.

2.1.3. The Worldwide LHC Computing Grid

The LHC (Large Hadron Collider), at CERN (European Laboratory of
Particle Physics), is the world’s largest and most powerful particle collider,
and the largest and most complex experimental facility ever built [21]. De-
veloped by a collaboration of over 10,000 scientists and engineers from over
100 countries, the LHC started full operation in 2010, after nearly 20 years
of preparation and construction. The LHC lies in a circular tunnel of 27
kilometres beneath the Franco-Swiss border near Geneva, Switzerland. Four
detectors are operated by four particle and high-energy physics experiments:
ALICE (A Large Ion Collider Experiment), ATLAS (A Toroidal LHC Appa-
ratus), CMS (Compact Muon Solenoid) and LHCb (Large Hadron Collider
beauty). In July 2012, ATLAS and CMS announced the existence of a new
particle, consistent with the theoretical prediction of the Higgs boson, by
François Englert and Peter Higgs, who were awarded with the Nobel Prize
in Physics in 2013.

The LHC physics experiments aim at detecting very low probability pro-

12 Chapter 2. Large-scale Computing

cesses hidden in an overwhelming background of particle collisions, gener-
ating very large samples of data, in the form of discrete events. Including
the data generated by the necessary physics and detector simulations, the
LHC computing system has produced tens of petabytes of new data each
of the last few years. These data must be processed and analyzed, using
computational jobs.

Years before the LHC was operational, it became evident that, with the
available funding, CERN alone would not be able to satisfy all the com-
puting and storage requirements that the activities of the LHC experiments
required. The solution to this problem was found in the local computing
facilities of the associated institutes participating in the LHC experiments.
A distributed system that made use of all the available resources was pro-
posed. Eventually, grid technologies were chosen to implement such system,
since they seemed to tackle exactly the problem at hand. This distributed
resource model matched well with the funding structure of the entities in-
volved with the LHC and should make it easier for physicists at the different
institutes to gain access to the necessary data.

The Worldwide LHC Computing Grid is a large distributed computing
infrastructure—more than 400,000 CPU (Central Processing Unit) cores,
300 PB of disk and more than 200 PB of tape—devoted to store, deliver
and analyze the data generated by the LHC, making the data available to
all partners, regardless of their physical location [22]. The WLCG is oper-
ated by a global collaboration of more than 170 computing centres, in 40
countries. The WLCG is supported by many associated national and in-
ternational grids, such as EGI (Europe-based) and OSG (USA-based), as
well as many other regional grids. While both EGI and OSG provide com-
putation resources to researchers from many different scientific disciplines,
the high energy physics community is their most important consumer (in
terms of resource needs) and the main driving force behind the projects. As
a whole, the WLCG is the world’s largest computing grid [16]. More than 2
million jobs are run every day and these figures are bound to increase once
the LHC starts its next physics run in summer 2015, after several years of
shutdown [18].

To satisfy the needs of the LHC experiments, the WLCG has faced the
following challenges:

Manage very large data volumes at very high data rates.

Provide the necessary CPU and storage capacities for processing, sim-
ulation, analysis and data preservation.

Provide long-term data archiving in a robust way.

Allow several thousands of physicists to access the data from their
different home institutes all over the world.

2.1. The Grid 13

Manage both centrally organized data processing and chaotic user
analysis (dependent on the evolving needs of the numerous analysis
groups and individual physicists).

2.1.3.1. WLCG Architecture

In WLCG, each experiment is represented by a VO. Each resource cen-
tre (site) may decide to support one or more of these VOs. The sites are
organized in tiers, according to their relative size (in terms of resources) and
the functions they accomplish. Even if the duties of each tier vary from one
experiment to the other, we can say that, in general terms, the centres are
classified as follows:

Tier-0 (CERN): Receives the raw data from the detector, caches it
on disk, archives it to tape and distributes a second copy among the
Tier-1 sites. Calibration and alignment are also run at Tier-0 and a
small sample of raw data is promptly processed for quality checks. In
addition, a first-pass processing of the raw data is performed too (and
the results archived and distributed to Tier-1 centres).

Tier-1 : Usually equipped with mass storage systems and archival fa-
cilities (tape), Tier-1 centres are responsible for reprocessing the raw
data once adequate calibrations are available, as well as for distribut-
ing it to the collaboration. They also host simulated data produced at
the Tier-2 sites.

Tier-2 : They host a share of the processed datasets and provide analy-
sis facilities, as well as resources for producing certain amount of sim-
ulated data.

Tier-3 : Opportunistic resources, with little or no formal commitments
(pledges) to LHC experiments, and mostly offering CPU only, with no
permanent storage available.

In regard to the middleware, software products from several different
sources are used in WLCG. This includes, among others, OSG, EMI (which
was the middleware provider for EGI and which, in turn, integrated com-
ponents from other projects, such as Globus or NorduGrid) and software
produced by CERN and the LHC experiments themselves. Figure 2.1 shows
the most important services in the WLCG, which are also described as fol-
lows.

Storage services. A SE (Storage Element) provides storage services
at a given site. Its interfaces are based on the SRM (Storage Resource
Manager), which provides the same management interface, regardless

14 Chapter 2. Large-scale Computing

User
Interface

File
Catalogue

WMS

SITE

 CE

 WNs SE
 (SRM)

Information
System

Query file
location

Query for
resources

Jobs:
 - submit
 - status
 - retrieval

Jobs

Jobs
operations

Read / Write

Query

File
Transfer
Service

Other
Site

Query

Transfer
requests

Fig. 2.1: Service architecture in the Worldwide LHC Computing Grid.

of the underlying storage technology and the available data access
protocols [23]. However, all WLCG SEs support the GridFTP protocol
for data transferring.

File transfer services. They manage data transfers between SEs.
They provide error recovery, retry on failure and a mechanism to share
bandwidth between VOs.

Computing services. The CE (Computing Element) is the interface
to the computing facilities at a site (most often, a batch system in front
of a computing cluster). It allows remote authorized clients to submit
jobs, perform status queries and retrieve output files. Each of the hosts
at the site where jobs are actually executed is called WN (Worker
Node).

Workload management. This function has been traditionally ful-
filled by the WMS (Workload Management System), sometimes also
called resource broker or metascheduler3, which matched the available
computing resources to the preference of clients, and submitted the

3Since the entity in charge of the scheduling of computing tasks in a traditional batch
system is called scheduler, the service selecting the batch systems to submit jobs to, is
often called metascheduler.

2.1. The Grid 15

jobs to the appropriate CE [24]. However, as we will see, this func-
tionality has been gradually moved into the workflow systems of the
experiments.

File catalog and database services. These services are usually run
centrally at Tier-0 and Tier-1 sites. The file catalogs map grid data
files to the SEs holding them while other databases contain alignment
and calibration parameters of the detectors and other metadata.

Information service. Aggregates and offers the information about
existing resources, their configuration and status (e.g., number of run-
ning jobs and available slots at the CE).

Application software. The experiment application software is reg-
ularly updated and must be made available at each site. A suite of
standard utilities are also provided.

2.1.3.2. The Compact Muon Solenoid Experiment

The CMS experiment is an international scientific collaboration that
investigates a wide range of elementary particle physics resulting from the
operation of one of the four detectors at the LHC (the CMS detector) [25].
Their goals include the search for the Higgs boson, extra dimensions and
particles that could produce dark matter. The CMS collaboration involves
4,300 physicists, engineers, technicians, students and support staff from 182
institutes in 42 countries (February, 2014).

Like the other LHC experiments, CMS has to deal with large amounts
of data and requires huge computational power. In order to fulfill its duties,
CMS makes use of the WLCG resources and middleware. In addition, it
develops and utilizes its own VO-specific software. The following are some
of the components used by CMS:

ProdAgent/WMAgent: Workload systems for centrally-managed
data processing and event simulation. ProdAgent used WLCG’s WMS
to submit jobs to sites (or local resources) [26]. The early work on this
thesis interacted with ProdAgent, as discussed in Chapter 7. ProdA-
gent was replaced by WMAgent [27], which was also able to schedule
jobs to sites directly but nowadays has been moved to a late-binding
overlay model, using glideinWMS.

CRAB: CRAB (CMS Remote Analysis Builder) is the tool used by
physicists to execute their analysis programs on the grid [28]. CRAB
interacts with the local user environment, the CMS data management
services and the grid middleware. Its goal is to hide the complexities
of the grid environment from the user in order to ease their work. It
currently uses glideinWMS to schedule jobs at the sites.

16 Chapter 2. Large-scale Computing

glideinWMS: A pilot-based late-binding overlay system [29]. We will
discuss this in Chapter 3.

PhEDEx: Data placement and transfer system [30]. PhEDEx man-
ages the location of all CMS data files and their transfer between
storage elements. In order to deal with the different storage technolo-
gies (including tape access), a series of PhEDEx agents run locally
on each site and are configured by local administrators. These agents
communicate with the central services, which coordinate the datasets
ownership, subscription, transfer, etc.

DBS/DLS: The DBS (Dataset Bookkeeping Service) and DLS (Data
Location Service) are databases containing metadata and semantic in-
formation (physical meaning) of CMS data files, as well as providing a
look-up service for workload management systems to locate data [31].

2.2. The Cloud

2.2.1. What is the Cloud

According to the National Institute of Standards and Technology [32],
cloud computing is:

A model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be rapidly
provisioned and released with minimal management effort or service
provider interaction.

Cloud providers offer remote access to large pools of (usually, virtual-
ized) resources upon request (usually, for a fee). Even if variations of similar
paradigms have existed since the time of the mainframes, the modern con-
cept of cloud computing was popularized by the success of the Amazon Web
Services offer, launched in 2006 [33]. As we already indicated, cloud comput-
ing can be considered to be a new materialization of the utility computing
paradigm: instead of owning computing resources, users consume cloud ser-
vices (ignoring where these resources are actually located). Cloud providers
claim that economies of scale make their offers cost-effective. They rely on
virtualization technologies to achieve the required flexibility to comply with
consumer needs and the elasticity to adapt to the demand dynamically.

Several different cloud computing service models exist. The three most
often cited are:

Infrastructure as a Service: The consumer is provided with the ca-
pability to deploy fundamental computing resources (processing, stor-

2.2. The Cloud 17

age, networks) and run arbitrary software (including operating sys-
tems) on them. This is usually achieved by letting the user ship its own
VM (Virtual Machine) to the underlying cloud infrastructure (which
is out of the consumer’s control).

Platform as a service: The consumer is provided with a framework
(including a number of libraries, tools and services) where she can
deploy her application (with no control of the underlying environment
or operating system).

Software as a service: The customer makes use of remote applica-
tions through their provided interfaces (often through a web browser).
The user does not have any control of the environment or the resources
where these applications are run.

It is arguable whether cloud and grid computing are the same thing or
one is a subset of the other or, even if they are completely different models. In
our view, they are closely related paradigms, especially because both of them
aim for the consumption of computing resources as utilities, accessing them
at any moment and from any location, but there are also some differences
between them, as they are generally understood. This is also the view of
Foster et al., who provide an in-depth comparison of both technologies [34].

Possibly, the main difference between the grid and the cloud is philosoph-
ical: while the grid vision was to federate (share) resources from different
collaborators and to enable the access to any kind of resources through stan-
dard interfaces, the cloud, originated in the private sector, was presented as
a centralized and closed offering of services and mostly in the form of pro-
prietary solution. Technologically, the cloud, more recently born, has raised
the scale of the resource centres and has embraced virtualization to ease the
management of resources and to gain flexibility. In addition, cloud providers
have been more successful than developers of grid tools in offering easy-to-
use services and have attracted a much wider community of consumers. This
can be easily observed in Figure 2.2, which shows the different volume of
searches in the Google search engine for the terms grid computing, cloud
computing and big data (which will be dealt with in Section 2.3). It can be
seen that grid computing is almost forgotten by now while cloud computing
reached higher levels of popularity, even if this are already decreasing.

But some of these differences are starting to blur because both models are
evolving. Private cloud products are now maturing. These apply the dynamic
management of resources of commercial offerings but are run by customers
themselves (avoiding certain privacy concerns) and employ open interfaces.
In parallel, virtualization is also being incorporated into the management
of resources in grid centres. In fact, private and public clouds can also be
seen as a new abstraction, part of a more complex grid of federated and
paid resources. In the end, the important point is that users (in particular

18 Chapter 2. Large-scale Computing

Fig. 2.2: Search volume for grid computing, cloud computing and big da-
ta. Source: Google trends (http://www.google.com/trends), accessed on
January 4th, 2015.

researchers) have nowadays the technology—be it grid, cloud or a mix of
them—to access a vast amount of resources, enabling them to execute a
new range of applications.

2.2.2. Cloud Computing for Scientific Research

We have seen that, while grid technologies failed to gain wide acceptance
outside of the academic circles, they are still consistently used in real sci-
entific workflows today. The EGI and OSG infrastructures and, especially,
the WLCG are the foremost examples of this. With the irruption of cloud
computing, the scientific community has started to evaluate if they can also
take advantage of the vast resources made available by cloud providers. In
addition, clouds offer clear advantages over traditional (grid) data centres.
In the infrastructure-as-a-service model, scientists can ship a customized
VM with all the necessary software and configuration to run their experi-
ment. This eliminates the burden of adapting the scientific applications to
different environments and reduces the risk of misconfiguration errors. The
second desirable characteristic of cloud resources is that they can grow or
shrink on demand. This means that scientific groups can undertake costly
computations as soon as the need arises, without having to wait for their
associated data centres to provision new resources [35].

http://www.google.com/trends

2.3. Big Data 19

However, while cloud technologies are designed to be easily used by the
average company or consumer, it is not clear that they can accommodate
all kinds of scientific applications, which sometimes have demanding require-
ments. In particular, while clouds offer virtually unlimited processing power,
their data management capabilities (providing efficient access to large stor-
age systems and making use of data location information for scheduling) are
still limited [34]. In addition, the virtualization of resources imposes certain
performance penalties, especially in I/O (Input/Output).

Another important criteria to consider when evaluating cloud usage is,
naturally, the monetary cost. The charges associated with moving data
in and out of the cloud are currently prohibitive for data-intensive work-
flows [2]. Moreover, even for CPU-intensive workflows, it may be more con-
venient to acquire the necessary resources than to routinely run in the cloud.
Early studies on the usability of cloud computing for scientific computations
have yielded negative conclusions [35], also in the particular case of CMS [36].
However, even if they do not recommend using the cloud for the baseline
operations, they concede that such on-demand resources may be very helpful
to scale out during times when spikes in usage are required.

Although existing cloud offerings have not been deemed appropriate for
all scientific applications and, in particular, an infrastructure like WLCG will
not be abandoned anytime soon, the scientific community is very interested
in cloud technology [1]. First of all, because they aim to be prepared to
use the cloud resources, should the necessity arise, their cost be reduced or
their capabilities improved (since they are still maturing) [36]. Moreover, the
community is also trying to incorporate some of the advantages of the cloud
into their own infrastructures. For this, they are building private clouds,
where resources are virtualized and access for the scientists is simplified (e.g.,
CERN’s agile infrastructure [37]). In summary, the experiment frameworks
must be prepared to deal with grid and cloud and possibly other future
resources and services. It is unlikely that a uniform set of standard interfaces
will be available soon, so these frameworks must be able to deal with a variety
of them.

As we will see, most of the work we present in this thesis, even if it was
developed and tested in the grid environment, is equally applicable to the
cloud paradigm.

2.3. Big Data

The general trend of massive data production and the technological ca-
pability to capture, store and process it have been identified as an oppor-
tunity for business, science and society. By applying advance statistics and
analytics, data mining and machine learning techniques, powerful insights
may be obtained. Business aim to understand customer patterns better, to

20 Chapter 2. Large-scale Computing

be able to measure the impact of their sales or marketing strategies, or
to develop more accurate risk calculations. Scientific research, as we have
seen, relies more and more in data coming from telescopes, medical imag-
ing or environmental monitoring. Finally, customers enjoy new applications,
from recommendation engines and price comparators to automatic language
translators.

In this context, the term big data has emerged as a reference to this
current abundance of data and the opportunities its analysis offers. Techni-
cally, the term is often used to denote any collection of data sets that are too
large or complex to be processed using traditional applications. To be more
precise, the community usually identifies three main characteristics for big
data, these are the so-called three Vs: volume (large data sets), variety (dif-
ferent types of data, usually unstructured, semi-structured and structured)
and velocity (high frequency data generation, e.g., via streaming or real time
applications) [38, 2].

2.3.1. It is the Data

The big data phenomenon has drawn great attention in the research
community, the industry and the media. This has been identified by Gart-
ner in its latest hype cycle, from August 2014, shown in Figure 2.3 [39].
We can observe that big data is still in the upper part of the plot (inflated
expectations) while cloud computing is in the lower part (trough of disillu-
sionment) and grid computing has even disappeared from the plot at this
time. As Gartner’s classification implies and as it occurred with the cloud
and, earlier, with the grid, big data is now subject of certain hype. It is
difficult to say what the impact of this trend will be when we look at it a
few years from now. It seems clear, however, that the superabundance of
data is a firm trend and that, if anything, it will increase in the future.

As we have seen, the scientific domain is not an exception to this trend.
Handling large amounts of data is, more and more, a must for scientific
applications. Actually, we can probably say that science preceded business
or general society in this tendency. What is interesting, though, is that this
need for technologies that are able to deal with huge data volumes has ex-
tended to the industry. Even if there may be peculiarities in the requirements
of the research community and in their computing workflows, mainstream
technologies are now concerned with problems that look similar to theirs [3].
Scientists are looking into industry solutions to tackle their problems, main-
ly for the obvious advantage that such solutions do not require dedicated
development and maintenance efforts from the community itself (often sub-
ject to uncertain funding) [18]. We already saw this with the exploration of
cloud computing usage but it is also happening elsewhere [40].

Another important implication of this data profusion is that, in many
cases, the computational workflows become data-centric: processing is no

2.3. Big Data 21

Fig. 2.3: Gartner’s hype cycle for 2014. Source: http://www.gartner.com/.

longer the only issue, probably not even the main one; it is the data. En-
suring that the data can be properly stored and accessed, and optimizing
scheduling to avoid excessive data replication or movement become funda-
mental duties for efficient workflow execution (time- and energy-wise). This
was long ago realized by the grid community [41] and it is being acknowl-
edged by the industry also, with data location-aware architectures, such as
MapReduce [42] (and its later open source versions), and even proposals for
new data-centric computing paradigms [43].

Wrap-up: We live in the data age. Business, science and citizens are strug-
gling to capture, transfer, store and process the torrents of data at our disposal.
We have reviewed two of today’s main large-scale computing environments, used
precisely for those purposes. First, grid technologies: grown in academia and
heavily used by substantial scientific communities. Second, cloud computing:
general-purpose utility computation, impulsed by the private sector, but more
and more used for the execution of scientific workflows. We have also provided
a more detailed view of the currently most extensive grid infrastructure in the
world, the WLCG, and of one of the four LHC experiments making use of it,
CMS, whose needs and challenges have motivated our work. Finally, we have
briefly discussed the present excitement around the big data concept and what

http://www.gartner.com/

22 Chapter 2. Large-scale Computing

this may bring, in terms of both opportunities and computing paradigms.

Efficient scheduling and execution of data-intensive workflows is the central
problem addressed by this thesis. While our work originated in the specific con-
text of the WLCG and targeting the optimization of the CMS experiment work-
flows, we argue that the issues we face and the solutions we find are of more
general applicability. For one thing, scientific applications are incorporating
mainstream technologies and industry solutions, such as the cloud and new
big data tools. Also, industry and society are moving towards a world of data
abundance. Appropriately handling this data and developing workflows that can
consume it efficiently are becoming major requirements for modern computing
deployments in many different domains.

Chapter 3

Workload and Data
Management

The duty of deciding when and where computational tasks are run, and
controlling their execution, is called workload management. This involves
discovering which processing resources are available, selecting the best ones
for a given task, dividing the task into a series of batch jobs, dispatching
these jobs to the resources, watching the evolution of their status (making
sure they are run successfully) and, finally, recovering the output produced
by them.

While individual users can employ the grid protocols and tools to gather
resource information and submit computing jobs to the appropriate desti-
nations themselves, this task becomes complex and tedious when the num-
ber of tasks and resources increases. Most usually, the responsibility for re-
source selection and job submission is given to a metascheduler. The nominal
metascheduler for EGI and WLCG was called WMS and followed the tra-
ditional grid brokering paradigm. This service was considered a constituent
part of the infrastructure and could be used by all the grid VOs. However,
the system has been gradually abandoned and replaced by VO-specific late-
binding overlay systems. Both the traditional and the late-binding systems
are discussed in Section 3.1.

Even if the initial grid proposals were perhaps more concerned with en-
abling the access to distributed processing capabilities, it was soon realized
that the data was a very important resource on its own right. Moreover, given
the increasing sizes of the data volumes handled by some applications (espe-
cially, in the scientific domain) and the heterogeneity of requirements, tech-
nologies and policies, it became evident that its management would be far
from trivial. Early on, the concept of data grid was introduced as a general
architecture that would enable different data-intensive applications to prop-
erly store, replicate and access data, manage metadata information, provide
look-up services and co-schedule data transfers and computation [44]. The

23

24 Chapter 3. Workload and Data Management

WLCG architecture was designed to provide these but practice has shown
that the task was really complex and challenging. Section 3.2 discusses the
WLCG data management services and the problems it faces.

Finally, we will focus on the scheduling of applications consuming large
amounts of data. It has been long accepted that, within a computer sys-
tem, memory management and process scheduling should be considered in a
coordinated fashion [45]. A similar reasoning may be applied to distributed
scheduling of data-intensive computational tasks, at several levels (grid-wide
and within resource centres). Section 3.3 analyzes this question and reviews
traditional and current proposals while Section 3.4 discusses modern ap-
proaches to the problem, considering both mainstream scientific computing
trends.

3.1. Workload Execution

Usually, the main objective of any scheduling system is to improve the
efficiency of the workload execution. The most straightforward way to un-
derstand efficiency here is the aim of minimizing the time elapsed from
job submission to retrieval of the output (job turnaround time). This can
be extended, however, to the time required to complete a given workflow1

(workflow turnaround time or makespan) or, perhaps, the average comple-
tion time for all the jobs of a user or a VO, or even all the jobs that are run
on the grid infrastructure (global efficiency). As we will see, these targets are
often compatible with each other, but, in occasions, they may be conflicting.
This kind of difference is noted by Buyya et al., who compare traditional
cluster schedulers and grid brokers [6]. They state:

The schedulers in cluster systems focus on enhancing the overall system
performance and utility as they are responsible for the whole system. On
the other hand, the schedulers in Grid systems called resource brokers,
focusing on enhancing the performance of a specific application in such
a way that its end-user’s quality of service requirements are met.

In principle the aim of a distributed computing system should be to
optimize both criteria, to the extent possible, or, at least, reach a certain
compromise solution.

3.1.1. Traditional Grid Brokering

The traditional model for job scheduling in the grid is outlined by the
diagram in Figure 3.1. Users send their computational task requests to one

1By workflow, we refer to a collection of computational jobs, which may be related to
each other via dependencies (i.e., requiring that some jobs are executed before another
one is started).

3.1. Workload Execution 25

of the existing metaschedulers (WMS), which will in turn submit them to
some of the computing elements in the infrastructure. The WMS must select
a target CE for each job and it does so based on the information it receives
from each possible destination and the preferences of the job submitter. The
resource information includes policy and configuration (e.g., which VOs are
authorized to run there, how many slots are allocated to each one, etc.),
status (how many jobs are running or queued on the site already) and others
(e.g., whether certain site holds the data required by the job at hand or if
some software is installed). The CE passes the received job to the batch
system, which enqueues them and, eventually, schedules them to run on
some of the nodes of the computing farm.

Fig. 3.1: Traditional scheduling of grid computing jobs.

The submitter preferences are indicated by the client via the requirement
and rank expressions. The first one is a logical expression that indicates a
series of constraints that the resources must satisfy in order to be eligible as
destination (e.g., that the site holds some required data or that it is located
within certain domain). The second one is an arithmetic expression used to
order those matches according to their ranking value (e.g., prefer those sites
with higher number of free slots).

The described model was dominant in WLCG for a long time since it
was relatively simple to operate and satisfied the baseline requirements. The
distributed nature of the WMS services (which operated independently) al-
lowed the architecture to scale as desired by just deploying more instances of
the brokers. However, extensive experience with the system, at large scales,
revealed that it suffered from several problems. The two most important
ones were its absolute reliance on the information system accuracy and the

26 Chapter 3. Workload and Data Management

existence, in practice, of two scheduling levels, one at the WMS and another
one at the site’s batch scheduler [18, 29].

Regarding the information system, there are several factors to consider.
Firstly, in grids like WLCG, the amount of available resources is so large
that it is not realistically possible to have an accurate view of the status of
all services at all times. A minimum limit must be set for the information
polling period. However, it is not unusual that the status of a site varies
drastically in a short period of time. Since brokers work independently, it
may happen that several of them detect that a site has free slots and decide
to send a fairly high number of jobs to it. The CE of the site may then
become overloaded by the combined amount of jobs from all the WMS’s.
Moreover, the grid information system often just fails to capture all the
complexities of the site’s batch system status and configuration. A site may
configure different priorities and limits for different VOs or even types of
users (roles) within each VO. In practice, it is not really feasible for the
WMS to determine whether the job at hand will find a free slot at a given
site or if it will have to wait on the CE’s queue for long.

The second problem is the difficulty that VOs have to enforce their pri-
ority policies. When different jobs of a VO are queuing at a given site, it
has no control of which ones run first. This is decided by the batch system’s
scheduler. WLCG VOs keep communication channels with sites and do pro-
vide instructions for configuration of the schedulers. However, since they
have no direct access to the sites, any change requires manual intervention
of the local administrators. With tens of sites supporting the WLCG VOs,
this kind of actions may take weeks to be accomplished.

In addition to these deficiencies of the traditional scheduling mecha-
nism, workload execution in grid environments suffers from other generic
problems. Firstly, in order to profit from all existing resources, several sub-
mission interfaces must be used and grid jobs must be prepared to deal with
heterogeneous environments, complicating the application development. In
addition, given the size of the infrastructure, the chances that some WN
causes job failures, because of a misconfiguration, a hardware breakdown
or a disk becoming full, are quite high. Thus, the success rate for grid job
execution is severely penalized. In extreme (though, not rare) cases, a single
ill WN (but regarded as healthy by the batch system) causes the failure
of hundreds of jobs because it constantly appears to be free and pulls new
tasks, which die immediately upon execution start. This is called black hole
effect.

Alternative job scheduling systems have been also proposed. For in-
stance, auction-like systems where each resource bids for a given job request
have been described. Calana is an example of this [46]. Its authors argue that
this system eliminates the dependence on a global information system that
unavoidably holds some old information (gathered at some time in the past).

3.1. Workload Execution 27

However, auction-like systems have communication problems of their own,
since job proposal have to be distributed to all resources and bids must be
gathered and compared [47]. We will not discuss this kind of systems since
they have never reached wide acceptance in large scientific grids, such as
WLCG.

3.1.2. Late-binding Pilot Overlays

In order to alleviate the problems of traditional grid scheduling, some
WLCG VOs developed and progressively adopted a model of late-binding
metascheduling for their computing jobs. This model has proven very suc-
cessful and has become the de-facto standard for the whole WLCG [18].
In late-binding scheduling, work is assigned to a node at the last possible
moment before real execution. A VO agent is initially scheduled as a normal
grid job (using traditional WMS/direct submission) with the main duty of
pulling a real job from a VO task queue once landed on the execution re-
source. This VO agent is usually called pilot job. This model is illustrated by
Figure 3.2. Even if designed for the grid, pilot job systems have been lately
used to successfully integrate cloud nodes and even volunteer computers into
the VO resource pools [36, 48].

Fig. 3.2: Late-binding task scheduling using an overlay of pilot jobs.

There are several advantages in the use of pilot jobs. Firstly, pilots are
sent to all available resources, using different interfaces, but present an ho-
mogeneous environment to the real applications (which can thus be made
simpler). They also verify that computing resources are healthy (according
to VO-specific criteria) before real tasks are run, thus significantly reducing
failure rate (and avoiding black holes). In addition, late binding means that

28 Chapter 3. Workload and Data Management

pilots request tasks only when an execution slot is available. Therefore, un-
certainties about available resources and waiting times greatly decrease. I.e.,
the architecture does not depend on obtaining totally accurate knowledge
about status resources from the information system, as traditional schedul-
ing did. Finally, since jobs are retrieved from a unique queue of tasks, which
is directly managed by a VO, the global priorities can be adjusted almost
immediately (with no manual intervention at the sites).

The described advantages justify the success of the pilot systems in
WLCG. Nevertheless, their use brings an additional desirable effect: the
reduction of the makespan of grid workflows. The late-binding approach
offers better performance (reduced completion time) for the fulfillment of
finite computational workloads. This effect is discussed in depth, with the
help of an analytical model of grid workflow execution, in Chapter 5.

We are very interested in the late-binding overlay systems because we
have relied on this model to build our own architecture for workload ex-
ecution in distributed environments. We profit from the benefits that this
paradigm provides and enhance it by adding new functionalities, namely
data caching and micro-scheduling. This new architecture is introduced in
Chapter 7

3.1.2.1. Existing Pilot Systems

Pull-based overlay architectures, similar to the WLCG pilot systems,
were found earlier in the literature. An example of this is the placehold-
er scheduling [49]. Moreover, the pull-based paradigm can also be seen as
a generalization of the well-known master-worker pattern. In particular,
Berthold et al. propose a hierarchical version of this paradigm, which re-
sembles the task delegation to the site’s pilots occurring in our proposed
architecture [50]. However, this is the only resemblance point since, within
their subclusters, centralized task scheduling is used while we use a dis-
tributed matching procedure.

DIRAC (Distributed Infrastructure with Remote Agent Control) was the
first pilot-based system used by a large VO (LHCb) in WLCG [51]. Since
then, several other VOs have adopted the same model. Examples of large-
scale systems in use today are AliEn (ALICE Environment), used by the AL-
ICE VO [52], PanDA (Production and Distributed Analysis), by ATLAS [53],
and glideinWMS, used by CMS [29]. All of these systems share the main ar-
chitecture model: pilot jobs are sent as placeholders and they retrieve real
tasks at runtime. The first three systems use a similar central queue, ac-
cessed using standard protocols, such as HTTPS or secure XML-RPC, from
where tasks are pulled. As for glideinWMS, it is an extension of an HT-
Condor system, in which there are two Collector daemons (responsible for
matching jobs an resources), one at the factory, which deals with pilot jobs
and one at the VO front-end, which matches the real VO tasks with the

3.1. Workload Execution 29

resource descriptions sent by the pilots [19].
The functionalities offered by these systems and the lessons learnt by

their VOs serve as a major inspiration for our work. Some interesting char-
acteristics that we have taken from them (in general, introduced by DIRAC,
then adopted by others) are the following:

Pilots send periodic heartbeat messages so that the central servers can
notice if the pilot dies for some reason and if the task it was running
must be rescheduled.

Each pilot runs several tasks in a row, as long as it still has enough
time before the limits imposed by the batch system are reached. In
this way, the overhead incurred by going through the grid submission
process and the batch system job start is divided among the number
of tasks run on the pilot.

VOs keep a certain excess of pilot jobs (with respect to enqueued tasks)
to cover inefficiencies of real computing resources or middleware.

Submitted pilot jobs are as lightweight as possible. Any additional
required libraries are downloaded from a web server in order to avoid
congestion of grid submission systems and to allow the use of standard
caching procedures for the libraries.

3.1.2.2. Issues and Challenges

Even if pilot systems have proved very successful, they also present a
few issues and face some challenges. The first one is that—born within the
VO frameworks—they were not designed as general-purpose systems, but
optimized for the VO software and needs. In the last years, however, there
have been strong efforts to revert this situation and make the systems usable
by other VOs. In particular, we know that DIRAC is being used by several
smaller VOs (which lack the funds to develop another pilot system of their
own) but this is not the only move in that direction.

Another problem is that of traceability. Traditional grid jobs must au-
thenticate with the certificate of their submitter. Thus, it is always possible
to map a job with the individual who sent it (which is a security requirement
by WLCG). Pilot jobs, on the contrary, are submitted by central services
and can run jobs of any user, so, in principle, it is not easy to trace from
a problematic task to its submitter. This has been partially solved by the
use of gLExec, used to perform an identity change from the pilot to the user
associated to the real task credentials [54]. However, this technology is com-
plex and problems have been found when trying to enforce it in all WLCG
sites [18].

30 Chapter 3. Workload and Data Management

Finally, all of the indicated pilot frameworks rely on a centralized task
matching and assignment procedure. Apart from the fact that a central
queue of tasks may become a SPOF (Single Point of Failure), as the num-
ber of pilots and tasks increases, the process to match real jobs to pilots
gets harder, leading to potential bottlenecks in the queues. While the pilot
systems of the WLCG VOs seem to satisfy their needs, this might not be
the case if finer matching requirements were imposed. This is discussed in
more detail in Chapter 8.

3.2. Data Management

The European research projects preceding and up to EGI aimed to raise
an international data grid infrastructure for e-science. They built on the
concepts proposed by Chervenak, et al. [44] to define the main data manage-
ment services supported by the infrastructure—storage elements, file trans-
fer services and file catalogs—as indicated in Section 2.1.3.1. However, the
materialization of this architecture into real computational services, usable
by the scientific VOs, proved to be even more challenging that foreseen. It
took several years before the middleware provided by projects like WLCG
was capable of delivering the expected functionality at the required scales,
with affordable operational costs [55]. In fact, the grid data management
technologies are still—and probably will always be—evolving.

Let us now briefly review some of the main data-related issues confronted
by WLCG VOs and how they are tackled.

3.2.1. Storage Elements

Storage elements are the basic building block of the WLCG data man-
agement system. They hold all the data produced, in one way or another,
by the experiments. Data must be kept (sometimes for a relatively short
lifetime, in other cases, for decades) but it also must be accessible for a
high number of users and computational tasks (with varied access patterns
and using different protocols), and it must be easily replicable to other SEs,
through the WAN (Wide Area Network). Essential functionalities that a SE
must support include transparent capacity growth or shrinkage, namespace
management, enforcement of complex authentication and authorization poli-
cies, space reservation and automatic file removal, if necessary. But the list
of requirements does not stop there.

Since data must be efficiently accessible by batch jobs and the number
of concurrent clients may be high (up to thousands on a single grid site),
large disk pools are customarily used as front-end technology and they are
carefully networked to the WNs on a site. Still, the wide range of different
activities performed by WLCG VOs, the complex access patterns that are

3.2. Data Management 31

often employed by the experiments and the need to also serve data repli-
cations to remote clients (high-latency, sequential, intensive copies) have
sometimes led to congestion problems when accessing SE’s data [56, 57].
These problems have of course increased when the number of I/O intensive
jobs in a site is high and, even more so, if an elevated number of clients try
to access the same file (or small set of files), causing what is called a hot-spot.
In order to fight this problem, VOs routinely set limits to the number of I/O
bound jobs that can simultaneously run against a single SE and the storage
systems apply techniques such as automatic replication of highly accessed
files.

But, in addition to disk pools, part of the WLCG data is archived in
tape, for cost efficiency and data preservation reasons. Tape facilities are
integrated into tertiary storage systems, which automatically archive data
after some expiration time and stage it back to disk when accessed again.
Because of this, SEs must also provide pinning capabilities, so that VOs
can mark data that should not be archived because it will be used soon.
Moreover, in order to avoid excessive data movement between disk and tape
and to ensure that no data is lost, WLCG defined a set of storage classes,
which indicate what files should be kept in disk, in tape or both [23]. This
depends on whether the site is the final responsible for the data (or some
other site is), and whether the files are expected to be accessed often.

At CERN, WLCG’s Tier-0 and largest site, the number of performed ac-
tivities and access patterns, as well as the number of data consumers (users
and jobs), are multiplied, and the management of a single SE becomes more
and more complicated. That is the reason why EOS, a disk-only modern SE
with in-memory namespace [58], was introduced to complement Castor, the
original tertiary storage system at CERN [59]. While Castor was designed
to meet the requirements of central data recording (fewer concurrent users,
organized data access, mostly write-once data, transparent tape migration),
EOS is optimized for read-write disordered analysis, with low-latency re-
quirements, and interactive access of hundreds of users.

But even if the demands set by WLCG VOs to the storage services are
challenging, the grid SEs have gone a long way to reach the required func-
tionality, robustness and performance. Thanks to continued technological
advances, today’s SEs are more capable to fulfill their duties. In addition,
site’s internal and external networks have been improved, storage systems
have been rationalized (like in the described Tier-0 example) and important
optimizations have been applied to the processing applications, meaning
that more efficient data access can be now performed [56].

3.2.2. Data Distribution

We have described the systems that store and serve data. However, stor-
age space is not infinite and data transferring is very resource consuming (in

32 Chapter 3. Workload and Data Management

terms of time, network and load). A thoughtful model for the distribution
of data in sites and an efficient service for organized data replication are
essential for a grid infrastructure like WLCG.

In regard to data distribution, experiments must decide how many times
each dataset should be replicated, where these replicas should be stored,
if they should go to disk or tape and so on. This is considerably compli-
cated by the fact that WLCG VOs have traditionally coupled computing
jobs to data locality (more on this, in Section 3.3), which means that highly
accessed datasets should be replicated to more sites (and also be available
on disk) and that sometimes data transfer requests cannot be predicted in
advance (since they depend on the activities of analysis groups and indivi-
dual physicists). Moreover, if significant portions of archived data must be
reprocessed, centrally coordinated pre-staging of the data must be carried
out beforehand.

As for data movement, a dedicated DPS (Data Placement System) is used
to ensure that datasets get copied to the intended destinations. If we take the
example of the service used by CMS—PhEDEx—sites just get subscribed
to datasets and PhEDEx takes responsibility for finding the sources for
the data, instructing the appropriate endpoints to initiate the file transfers,
watching their progress and performing the necessary retries on failures (thus
greatly reducing the necessary human intervention). For those datasets that
may accept newly produced files, PhEDEx also takes charge for copying
the new data when it is available. Moreover, since DPS’s have a global
view of data distribution and movement, these components can optimize
network usage by appropriately grouping transfers and can protect the SEs
by limiting the number of concurrent transfers that are scheduled on them.
While individual members of the VOs are given the ability to manually
perform file replication, massive transfers must be sanctioned by authorized
operators and, once approved, they are managed by DPS’s.

Other issues found when dealing with massive and complex sets of data
were the needs to perform frequent consistency checks to ensure that the file
catalogs are aligned with the real contents of SEs and the obligation to un-
dertake organized pre-staging of tape files into disk pools before scheduling
reprocessing tasks. At any rate, all the indicated tasks—data distribution,
supervision of transfers, ensuring consistency and coordinating the various
centralized activities–still require considerable amounts of operational effort.
For this reason, the VOs are now in the process of automating some of these
tasks, as we will discuss in Section 3.4.2.

3.3. Data-intensive Scheduling

A distinctive characteristic of data-intensive workflows is, by definition,
their need to efficiently access large volumes of data. If this is not a concern,

3.3. Data-intensive Scheduling 33

then they should not belong to this category. When scheduling jobs in a grid
infrastructure, the primary worry is often to let jobs run in resource centres
where required data is locally available. However, even when scheduling tasks
within a single cluster, taking into account the location of the data in the
individual nodes may be crucial to achieve satisfactory access throughputs.
The following sections discuss both problems.

3.3.1. Grid Scheduling

It is generally admitted that file locality is an essential parameter for the
scheduling of data-intensive grid applications. If jobs are submitted into any
available computing resource, regardless of their data needs, costly transfers
will need to be performed in order to move the data to where the jobs have
been sent. Extensive evidence of this is found in the literature. For exam-
ple, Cameron et al. show that optimum scheduling decisions can only be
achieved when both the processing/queuing time for tasks and the penalty
for data transferring are balanced in the selection process [60]. To compute
these values, file catalogues must be queried and information on the relative
network speed of the links between sites must be available. Efforts to incor-
porate these considerations into a scheduling system were made, e.g., by the
DIANA (Data Intensive And Network Aware) metascheduler [61] and the
Gridbus broker [62]. They select job destinations based on the estimation
of computational power of resources and data transfer costs, profiting from
a distributed network monitoring service. For each job to be scheduled, a
handful of computing nodes are selected according to their power, queueing
jobs and data transfer associated costs. In the case of DIANA, in addition,
once the job’s destination has been chosen, the best replicas of the required
input files are selected.

However, such complex brokers have never been widely used in WLCG.
The reality is that performing accurate estimations of the foreseen duration
of task execution and input data transfer is usually not feasible in practice.
Processing speeds are heterogeneous within resource centres and queuing
times are not always predictable. Data transfer speeds depend on too many
factors and no network weather service has been available in WLCG, at
least until very recently. In fact, the scheduling policy supported by EGI’s
WMS and traditionally used by WLCG VOs has been a simple submission
of jobs to the computing sites holding the required input data. We find a
more sophisticated behaviour in the workload management system of the
ATLAS VO, which, in order to assign tasks to a particular set of sites, may
balance the disk space available at the SE, the locality of input data and
the available CPU resources, and may request that the data management
system transfers input files to the selected sites. However, this is only done
for non data-intensive simulation jobs while physics analysis jobs are always
scheduled to sites where the required files are already available [63].

34 Chapter 3. Workload and Data Management

Moreover, even if it was possible to reliably estimate the duration of job
computation and data staging, there are other factors to take into account.
For example, the available space at each of the involved SEs may prevent
some transfers to take place or the required data may have been archived
to tape. Another point to be considered is the overhead associated with the
large number of individual data transfers that an integrated job scheduler
may cause. It is more efficient to let specialized DPS’s group and tune data
transfers asynchronously [64].

A different approach on the whole problem was taken by Ranganathan
et al., who propose to decouple the scheduling of jobs and the replication
of input data [41]. They suggest that an asynchronous replication of pop-
ular (most-accessed) files should be performed by an external agent and
that the scheduler should just submit jobs to sites holding required data at
the moment that the matching was made. They show that, under certain
assumptions, this approach achieves better results than on-demand repli-
cation. They admit that this result may be different if technology offered
greater WAN bandwidths. In any case, the great advantage of this model
is that it simplifies the design of both subsystems and that it allows for
independent optimizations of their functionalities. In fact, as we will see
in Section 3.4, WLCG VOs have recently started to follow a very similar
approach to the problem.

We also performed some early work on this topic, specifically enhanc-
ing an existing metascheduler to incorporate data location in its scheduling
decisions. We will review this work in Chapter 6.

3.3.2. Cluster Scheduling

The collocation of code and data is a more general research topic, not at
all limited to the problem of submitting jobs to the appropriate grid sites.
This factor has been taken into account in supercomputing and local batch
scheduling. For example, Korupolu et al. aim to optimize the placement
of data and jobs in a cluster system by applying a new algorithm based
on the similarities of the coupled problem to the Knapsack and the Stable
Marriage problems [65]. They notice that this allocation problem is NP-
complete2 and that the use of a LP (Linear Programming) solver to find
the optimal solution would be prohibitively slow. Their proposed solution
yields satisfactory results in a shorter time (but still not too quick, in our
view, since they report 333 seconds for the matching of 2,500 applications
on 1,000 nodes).

Moreover, data locality is also an important factor being considered by
modern commercial frameworks for parallel computation, where local file

2NP (Nondeterministic Polynomial time): no polynomial time solution is known for
the problem.

3.3. Data-intensive Scheduling 35

access is the key to increase data access throughput and, thus, system’s per-
formance. Notably, the successful Hadoop framework heavily relies on this
idea [66]. The Hadoop project was inspired by Google’sMapReduce program-
ming model [42] and the Google File System [67]. Like MapReduce, Hadoop
provides a framework to easily write fault-tolerant, distributed programs
(using the map and reduce paradigm) and, like the Google File System,
the underlying storage, HDFS (Hadoop File System), is a performant, scal-
able and reliable distributed file system, built on inexpensive commodity
hardware [68]. In HDFS, files are split in fixed-size chunks and distributed
over the disk servers. Each chunk is replicated several times with the aim of
increasing data reliability, availability and throughput. Hadoop takes advan-
tage of HDFS by scheduling its map tasks on the nodes containing the data
they need, thus allowing them to perform local reads and greatly reducing
the network usage.

The need to use the MapReduce model to run on Hadoop has prevent-
ed some existing applications from using it: firstly, they need to fit the
paradigm, secondly they would have to be rewritten to use it. This is the
case for most WLCG applications, whose gigantic code cannot be easily
modified. However, HDFS has been made to work as a site SE, accessi-
ble by grid jobs [40]. Interestingly, the authors moan about the inability of
traditional batch systems to make use of HDFS locality information. They
indicate that only 2% of the jobs run on the nodes holding their required
input data.

In fact, data locality has not generally been an issue for job schedul-
ing within grid resource centres, since computation and storage nodes have
been traditionally kept separated (WNs and SEs) and high throughput has
relied on capable networks and the deployment of parallel storage servers.
Research on grid scheduling has mostly focused on site selection and left
intra-site job allocation to traditional (and usually data-location unaware)
batch schedulers. We can find only a few works that study the job and da-
ta placement problem within a grid resource centre. Two of them modify
HTCondor to include data locality and transfer needs into their scheduling
process [69, 70]. The main target of the first of these works is to minimize
data movements while the second one seeks to improve the overall planning
of workflows.

These grid proposals show that data-aware intra-cluster scheduling may
achieve workflow turnaround improvements by increasing tasks and data
collocation and reducing data movements, especially given the current trend
of cluster size growth. However, at large scales, they suffer from scalability
problems since they are centralized solutions, where a planner ambitiously
tries to workout the optimal data and job distribution. In addition, these
algorithms rely on a specific site scheduler deployment and are not general
enough to include other parameters beyond task lengths and data location

36 Chapter 3. Workload and Data Management

in the optimization process.
Our late-binding architecture also incorporates data locality in the schedul-

ing of tasks within a given cluster in order to reduce network communication
and protect site SEs by using a file cache. Our system is more general since
it is integrated in the grid-wide pilot framework (superimposed on any batch
system technology), can take into account any parameters beyond data lo-
cation and is performed in a distributed fashion, thus avoiding scalability
problems. This is discussed at length in Chapters 5, 7, 8 and 10.

3.4. Trends

3.4.1. Mainstream Products

Despite the great success achieved by Hadoop and the MapReduce frame-
work, they are not the solution for all problems. In fact, several shortcom-
ings are often imputed to Hadoop: setup complexity (especially for sim-
ple applications), slowness for iterative analysis, restricted application mod-
el (MapReduce), deficient support for multi-tenancy (in particular due to
scalability problems by the job tracker when large shared clusters must be
managed) [71]. Certainly, it is not possible to review the whole range of
new products and technologies that aim to replace, enhance or complement
Hadoop, or simply become alternative solutions for applications requiring to
run on large distributed systems. For illustrative purposes, we will review a
few popular and representative examples.

With the goal of solving the main issues of Hadoop, YARN (Yet Anoth-
er Resource Negotiator), the new generation Hadoop’s compute platform,
introduces the resource manager and the AM (Application Master) [71].
The first one is a system-wide service that assigns a subset of the available
resources to a given application. The AM is run by the application itself
and is in charge of managing the different composing tasks. Each AM may
implement any computing model; MapReduce is one example, but not the
only possible one. In addition, YARN is more scalable, since instead of a
single job tracker, there is an AM per application (similar to the hierar-
chical master-worker paradigm, already mentioned [50]). Even with YARN,
Hadoop still relies on HDFS and the data location information it provides.
The AM must query the resource manager about file locations before ini-
tiating the application. This procedure is much less dynamic that the one
provided by our DHT-based distributed data cache.

Spark is a project that also addresses some of the fundamental limitations
of Hadoop, namely the overheads for short tasks and the complexity required
to perform simple analyses [72]. Spark is considered apter for iterative and
interactive applications. In order to achieve these objectives, Spark loads
most data in memory (though it still uses HDFS or another distributed

3.4. Trends 37

file system as back-end) and integrates its programming environment into a
general-purpose language, such as Scalla or Python. Regarding scheduling,
Spark uses a cluster manager to allocate executors, which are agents in
charge of running the user tasks3. For the scheduling of application tasks,
the Spark framework uses data locality (in memory or, failing this, on disk)
and applies the idea of delay scheduling.

The delay scheduling was introduced by Zaharia et al. in order to over-
come the conflict between fairness and data-locality matching in multi-
tenant Hadoop clusters [73]. They started by replacing the default Hadoop’s
FIFO (First in, First out) scheduler by a fair-share queue. However, they
noticed that, often, the next task to be scheduled (according to fairness rea-
sons) could not be run on any node holding its required data. The simple
delay scheduling algorithm tackles this problem by just delaying tasks for
a limited amount of time so that they can run on a node with the data.
They show that, given the size of their cluster, the multiple replicas of each
data block and the short lengths of Hadoop tasks, a small amount of waiting
time is enough to bring locality close to 100%. Interestingly, we indepen-
dently developed a similar strategy, though not identical since the contexts
are different, for our late-binding architecture (see Section 7.3).

The Omega scheduler was developed with the aim of replacing Google’s
main monolithic scheduler [74]. The monolithic scheduler has complete con-
trol over the whole cluster and deals with all enqueued jobs. Even if highly
customized and optimized, this scheduler faces several problems. Firstly, it
is doubtful that it will be able to scale to even larger clusters (which are
planned). Secondly, submitted tasks are heterogeneous and, while long-lived
ones may tolerate relatively long scheduling delays (due to the complex re-
quirements they impose), short-lived ones sometimes cannot accept such
long waiting periods (before being matched). Finally, the monolithic sched-
uler is difficult to maintain and enhance without disturbing operations.

In order to deal with the described problems, Omega authors compare
two-level schedulers (like YARN) and their proposal of shared-state, no-lock,
competing schedulers. In the first case, a first-level scheduler distributes
available resources among frameworks/applications, which, in turn, sched-
ule their tasks within the assigned subset. This is regarded as rigid and
pessimistic by Omega authors, who, instead, propose an architecture with
different independent schedulers (per framework or type of job), with a glob-
al view of the system, and submitting jobs to all available slots. Only when
a clash occurs, a scheduler reconsiders its job allocation. They describe this
as an optimistic approach. It is remarkable how this approach resembles the
traditional grid scheduling model of EGI and WLCG. There are however
a couple of important differences. The first one is that Omega will operate
in a highly controlled environment, where each scheduler can be limited or

3In that sense, the executors resemble the pilot jobs of late-binding overlays.

38 Chapter 3. Workload and Data Management

forced to satisfy certain policies. The second is that, even if Omega handles
a large pool of resources, these will probably be contained within a single
LAN (Local Area Network) and administrative domain, so their view of the
cluster status will be far more reliable than that provided by the grid in-
formation system. Lastly, Omega schedulers are able to detect clashes with
other peers and change their job allocation accordingly.

From the previous discussion, we would like to remark a few conclusions:

Overcoming scalability problems and reducing scheduling delays is a
major goal of most modern cluster schedulers.

Coupling job allocation to the location of required data is still consid-
ered necessary to achieve high throughput.

The discussed systems run mostly on single clusters only while appli-
cations on the grid access clusters on different sites (or clouds, etc.).

The competition for resources among different tenants is a major
headache for large setups and the problem is tackled in different ways.

The first two items are discussed at length in this thesis and they are
addressed by our distributed matching architecture; please refer to Chap-
ters 8 and 10. As for the third one, we must note that our late-binding
architecture must deal with both the inter- and intra-site scheduling of jobs.
Finally, regarding resource contention, we can find it in an environment like
WLCG at two different levels. The first one, the competition among VOs,
is not dealt with by our architecture (which is operated by a single VO). It
is the duty of the different sites (and their batch schedulers) to ensure that
each VO consumes its share of available resources. The second level refers to
the contention among different applications or users within a single VO. In
our system, other than the FIFO queue, this is handled by a simple priority
mechanism. It is not clear whether WLCG VOs require more than this, but,
admittedly, more complex patterns (e.g., fair-share enforcement or express
queues) could be added to the architecture.

3.4.2. Scientific Computing

While the traditional scheduling policy of WLCG VOs has always been
(and, to a great extent, it still is) to submit grid jobs consuming data on-
ly to the sites holding the required input datasets, this has been recently
complemented by two additional mechanisms. One of them is the use of an
automatic data placement system and the other one is the deployment of a
global infrastructure for remote data access. This are discussed as follows.

3.4. Trends 39

3.4.2.1. Automatic Data Placement

We have already indicated that the operational cost of manually dis-
tributing datasets among different sites is very high. That is the reason why
WLCG VOs have developed systems to automatically handle the replication
and deletion of datasets, based on their statistical usage. This is well in line
to the proposals made by Ranganathan et al. [41].

As an example of such a system we find ATLAS popularity and dynam-
ic data placement services [75]. The first one provides summaries of data
access per site, user, dataset or other attributes, and it is used to delete
underutilized dataset replicas. The second one measures the instantaneous
popularity of data based on the recently submitted user jobs and, if the
number of replicas in the system is too low, it requests the creation of extra
replicas. Notice that this implies that some of the queued jobs might be able
to be submitted to the sites holding the new replicas when their time to run
arrives. This also means that the workload and data management systems
are not completely independent.

The CMS experiment has a similar popularity data service, whose statis-
tics are used for automatic deletion and replication of datasets, based on
age, size, total and recent usage. In addition, policies such as guaranteeing
a minimum number of replicas for each dataset are enforced.

3.4.2.2. Remote Data Access

Several years of production activity have taught WLCG VOs that a
collaboration of thousands of users cannot be easily contained within an
excessively rigid model of operation. Taking the case of CMS as an example,
the strict hierarchy of tiers, according to which, Tier-2 sites depending on
a given Tier-1 should not transfer data from Tier-2s assigned to a different
Tier-1, had to be broken in favour of a more flexible model where data can
essentially flow between any two peers (though certain paths are preferred).
Likewise, the paradigm of users accessing only local data prevents them
from performing quick interactive analysis on data not held on their home
institute and causes the failure of grid jobs if a single file is unavailable on
the site where they are running4.

To prevent these issues and, in general, to come closer to the grid metaphor
of users being able to access data irrespective of its location, a data federa-
tion was developed in CMS [76]. This system defines a common namespace
for all federated storage resources. The technology used to access this stor-
age is xrootd, which defines the protocol to query for file existence and to
access file contents remotely [20]. All sites must deploy xrootd servers and

4This effect is not uncommon. A SE holds a complete dataset and attracts jobs desiring
to process it, but a few files may be corrupted or the disk holding them may be unavailable
for some reason.

40 Chapter 3. Workload and Data Management

register them with global xrootd redirectors, which are able to point clients
to the appropriate server holding their required data.

The xrootd data federation was initially used only for occasional access
to individual files (mostly for interactive usage) and as a fall-back for grid
jobs encountering data access problems at a given site. However, due to the
success of the system, CMS is starting to apply it to other situations, such as
diverting jobs requiring to process a dataset held only on an overloaded site
or allowing remote processing on Tier-3 sites (with no storage infrastruc-
ture). Such practices are only possible due to the already mentioned work
on CMS I/O optimization and to the improvements in WAN robustness and
bandwidth [56]. Still, they are only suited for certain types of applications
and imply some loss of efficiency. Moreover, care must be taken not to over-
load SEs and networks with too intense remote I/O. This leads to delicate
policy problems: should all users be able to perform analysis on remote da-
ta or only central groups? Perhaps only for certain activities? This kind of
questions are still being clarified by WLCG VOs.

Wrap-up: Workload and data management in large grid infrastructures, like
WLCG, are complex and demanding tasks. Moreover, they are interrelated ac-
tivities and any inefficiencies in one of them may affect the other. We have
seen that this is an important factor not only for scientific grids and applica-
tions but for mainstream and commercial solutions. Technology and practices
evolve to satisfy the changing needs of users and virtual organizations.

We have reviewed the traditional and the more recent late-binding overlay ar-
chitectures for grid scheduling. The first one suffers from excessive dependency
on precise and up-to-date resource information and an inability to enforce VO
priority policies. The second one solves these issues but still faces some chal-
lenges, of which, scalability will be of importance for our work. In regard to
data, efficient access and adequate placement have been a concern since the
inception of WLCG. Although great progress has been achieved, attempts to
reduce the human effort required for the operation of services are still being un-
dertaken. We have also surveyed the academic and commercial approaches to
the execution of data-intensive workflows, especially regarding the coordination
of data placement and job scheduling at a grid-wide level and within clusters.

The central work of this thesis is the proposal of a new scalable late-binding
architecture, which builds on the existing pilot systems to provide new schedul-
ing capabilities and improve data access by protecting massive storage systems
and considering data-location at all levels. This will be discussed in detail in
the following chapters.

Chapter 4

Distributed Hash Tables

A DHT (Distributed Hash Table) is a decentralized distributed system
that provides routing and look-up services. A node belonging to a DHT is
able to reach any other node given only its ID (Identifier). Moreover, the
system can store data in a distributed way and any node can retrieve this
data with the look-up operation. The absence of central coordination confers
robustness (absence of single point of failure) to the DHTs and makes them
a kind of structured P2P (Peer-to-Peer) network [77].

Another key feature of these systems is their scalability. As we will dis-
cuss later in the chapter, the properties of the DHTs make them able to
reach millions of members without causing problems in the nodes or in the
network. Both the robustness and the scalability make DHTs very attractive
solutions for large distributed systems.

One of the most prominent examples of DHT application is that of the
P2P file sharing systems. Networks such as Gnutella use a DHT to save and
look up file storage locations [78]. Since, as we will discuss in Chapter 10,
we will be using a similar system to share data among pilots in the grid,
we need to understand the basic properties of DHTs and in particular of
Kademlia, our chosen P2P system [79]. A discussion on these is presented
in Sections 4.1 and 4.2.

Moreover, Chapter 10 also introduces a new distributed task matching
algorithm based on the underlying DHT. This algorithm requires the utiliza-
tion of the broadcast operation, which is not usually present in most DHT
systems. As a result of this need, we have studied the problem of broad-
casting in DHT systems and in Kademlia in particular. Sections 4.3 through
4.5 review related work on this topic. A more detailed discussion on the
specific application of the broadcast operation to Kademlia, including our
contributions on the subject, will be presented in Chapter 9.

41

42 Chapter 4. Distributed Hash Tables

4.1. DHTs

4.1.1. General Description

In a DHT, both the participating nodes and the stored data are uniquely
identified by and ID (in the case of the data, the IDs are also called keys).
Data IDs are normally produced by using a known hash function so that
they can be easily computed from the data itself. Due to the properties of
the hash functions, all IDs belong to a finite space of possible values. Each
node in the DHT is made responsible for a subset of the ID space using what
is known as consistent hashing, so that, when nodes are added or removed,
only a small fraction of the keys must be reassigned [80]. How the assignment
of the keys is made exactly is one of the defining properties of the different
DHTs. When a new data element needs to be stored in the DHT, its key
must be computed and the peer that should be responsible for that key is
looked up. At this point, the node is contacted and the data stored there.
When a client wants to retrieve the data, it only needs to perform the same
look-up process again to find out which node holds the desired value and
ask for it.

Nodes in the DHT maintain a table with the address and ID of a subset
of the nodes in the system. An iterative (or recursive) algorithm must exist
that allows any node to find the peer responsible of an ID with the only prior
knowledge of its contact table. The general approach to tackle this problem
is that a node must have good knowledge of the nodes whose IDs are close
to his own one and keep a short list of contacts at further distances, in order
to forward look-up queries to them, as necessary. Thus, the algorithm to
search for a node with certain ID basically consists on iteratively contacting
nodes that are closer and closer to the target. The definition of ID closeness
(i.e., how distance between IDs is measured) is a key DHT characteristic
that differs from one system to another.

It is important to note that, as we will see in the examples below, nodes
in DHT systems are able to reach any other member in a limited number of
iterations and with help of a very short list of contacts, even for networks
with large number of nodes. As a matter of fact, the number of steps re-
quired to find a node grows normally with the logarithm of the size of the
network [81]. This ability makes DHTs scalable.

Normally, when a node joins the system, it needs to contact an existing
peer and then starts a procedure to discover other nodes. It is also common
that other routines exist to keep the contacts table up to date and to perform
any necessary rearrangement when a node leaves the network. The details
of these procedures are also important properties of the distinct DHTs.

4.1. DHTs 43

4.1.2. Applications

As we already indicated, DHTs were firstly applied to file sharing sys-
tems. Since then, however, they have been used as the basis for multiple
other applications. Their limitless scalability and the absence of single point
of failures make DHT systems the perfect candidates to serve as the look-up
or overlay routing facility for any distributed application that involves large
number of nodes.

DHTs have been proposed for many diverse uses, such as multicast and
anycast delivery, distributed data storage, DNS (Domain Name System),
search engine, CDN (Content Delivery Network), voice over IP communica-
tion, distributed database (especially noSQL) and more [82].

Focusing on proposals that are similar to the one presented in this work,
we are interested in the use of DHT-based techniques for file location track-
ing. In this case, apart from the storage systems (e.g., PAST, based on
Pastry [83]) and the file sharing services (e.g., Freenet [84]), we can cite
memcached as the paradigmatic example of data cache using consistent
hashing [85]. In the grid world, we find a P2P grid replica location cata-
log [86]. We do not add any contribution to these works. We just use the
DHT for file tracking and sharing in a way that is similar to the previous
proposals.

Our use of the DHT for distributed task matching is a different case.
There have also been prior efforts to utilize distributed techniques for schedul-
ing. SwinDeW-G is a workflow management system where grid nodes in-
terconnected using P2P techniques coordinate to distribute computational
tasks [87]. Likewise, Cao et al. suggest the deployment of local schedulers on
resource centres and their cooperation using a P2P network [88] and Rah-
man et al. propose to create a DHT-based logical coordination space where
grid resource and workflow agents can cooperatively schedule their workflow
tasks [89]. However, in this case, our work does offer some contributions.
The granularity of all the indicated proposals is at the site level, thus no
micro-scheduling is performed, and their P2P networks are grid-wide while
our DHTs are confined to a site’s LAN. Furthermore, their models assume
early-binding matching (even if they expect their systems to have more re-
liable information than traditional grid brokering systems). Lastly, none of
these works show tests of the scale that we do.

4.1.3. Examples

There is a large number of DHT proposals and implementations [77, 81].
It is not possible for us to review even a significant subset of them. We will
however discuss the main characteristics of Chord, since this was one of the
first proposed DHTs and it is often used as a reference DHT example in the
literature. We will also talk about Pastry because of its prefix-based routing

44 Chapter 4. Distributed Hash Tables

algorithm and its resemblance with Kademlia.

4.1.3.1. Chord

Chord uses a circular ID space of size N , where both nodes and keys
are mapped [90]. Starting from 0, the IDs increase if we follow the circle
clockwise. The node responsible for a given key is its successor, i.e., the
node whose ID is found first when turning clockwise (it may happen that
we reach the beginning and continue from 0).

A node with ID k has a pointer (finger) to its successor and the node
preceding it, as in a double linked list. In addition, the nodes keep M =
log2N fingers to the successors of the IDs with values k + 2i−1, i = 1..M .
With this scheme, every node has fingers pointing to nodes that are distant
from it by approximately half the ID space, a fourth of the space, etc. This
is illustrated by Figure 4.1, which shows a Chord system with a small ID
space of N = 128 and a few nodes (12, 29, 45, etc.). It also displays the
finger table for node 45. In this case, its contacts are nodes 61, 87 and 114.

Fig. 4.1: Chord buckets and binary tree for 16 nodes.

When looking up the successor of any ID, a node can reach a contact that
is located, at most, at half the distance from the target than himself. For
example, in Figure 4.1, if node 45 needs to find the successor of ID 25, it will
query node 114, which has a better knowledge of that part of the network.
This in turn will contact node 12, which will contact node 29 which is the
target. In general, look-up operations are completed in O(log2N) steps.

The underlying distance metric used in this system is the ID subtraction.
The distance between a node with ID A and a node with ID B is AB =
B − A if B > A, and AB = N − (A − B) if A > B. For instance, in the

4.2. Kademlia 45

previous example, for A = 45 and B = 61, then AB = 61 − 45 = 15 but
BA = 128− (61− 45) = 112 (because one must turn clockwise). Notice that
this metric is not symmetric (AB 6= BA) and a node has a good knowledge
of the nodes following it but not of the nodes preceding it (except for the
immediate predecessor).

The Chord protocol also defines algorithms for node joins and leaves and
a periodic maintenance routine to keep finger tables up to date, but we will
not go into further details.

4.1.3.2. Pastry

Pastry was also one of the first DHT systems presented [91]. Like Chord,
it also utilizes a circular ID space. The IDs are 128-bits digits of base 2b
(typically, with b = 4). In total, there are N = 2128 usable IDs.

Nodes in Pastry keep a list of L close contacts: L
2 successors and L

2
predecessors. In addition, they keep a prefix-based routing table. Each entry
in level i of a node’s routing table points to an ID that shares the first i
digits with the ID of the node. There are log2bN levels and, at each level,
there are 2b − 1 entries. When looking up an ID, a node will look for the
entry that shares the larger number of bits with the target. If the routing
tables are correct, the expected maximum number of steps required to reach
any target is log2bN .

As we will see, Pastry’s prefix-based routing is very similar to Kademlia’s
XOR-based bucket structure. However, the final routing step, when no longer
common prefix can be found for the target, is performed using the list of
(numerically) close contacts.

Authors of Kademlia say:

Of existing systems, Kademlia most resembles Pastry’s first phase,
which (though not described this way by the authors) successively finds
nodes roughly half as far from the target ID by Kademlia’s XOR met-
ric. In a second phase, however, Pastry switches distance metrics to the
numeric difference between IDs. It also uses the second, numeric dif-
ference metric in replication. Unfortunately, nodes close by the second
metric can be quite far by the first, creating discontinuities at particu-
lar node ID values, reducing performance, and complicating attempts
at formal analysis of worst-case behavior.

4.2. Kademlia

Kademlia was presented in 2002 [79]. It is a successful DHT, used in real
life applications like Gnutella [78], Kad [92] and BitTorrent [93].

Kademlia uses an ID space composed of all binary numbers between 0
and 2160. Each node is identified by one of these numbers and, like in other

46 Chapter 4. Distributed Hash Tables

systems, values stored in the DHT are owned by the node whose ID is closer
to the key associated to the value. The most important operation defined in
a Kademlia network is the look-up operation, by which a node can discover
and reach another node by its ID or the node where the value is stored by
its associated key. The look-up operation is performed iteratively: in each
step, nodes closer to the target are found.

A key concept for the look-up operation (and, thus, for Kademlia) is,
naturally, the distance between nodes (what closer means). Kademlia com-
putes the distance between nodes as the XOR (Exclusive Or) of their IDs;
that is, if A and B are two members of a Kademlia network, then their
distance is: AB = A⊕B. This means that, unlike in Chord, Kademlia dis-
tances are symmetric: AB = A⊕B = B ⊕A = BA. This feature simplifies
the analysis of the correctness of its algorithms and has several implications
(as we will detail in the following paragraphs), one of the most important
of them being that a node will learn about useful contacts passively when
these other nodes perform look-ups. This is different to DHTs like Chord
and allows Kademlia to avoid routine node discovery procedures.

In what relates to routing tables, each Kademlia node keeps a series of
buckets of K contacts. Each bucket contains nodes within a certain distance
range. In the simplest case, there is one bucket for each bit of node identifier
and their associated distance ranges are [2i, 2i+1) for i in [0, 160). This can
be seen as a binary tree: the ID space is successively split in two, increasing
the number of bits in common with the node ID by one. This is illustrated by
the tree in Figure 4.2, which includes the Kademlia buckets for node 0101.
Ovals contain nodes belonging to each bucket and, for each, the common
prefix with node 0101 and the interval of distances to it are indicated.

0001 00110010 0100 0101 0110 01110000

00 01

000 001
010 011

0 1

10 11

010x
[1,2)

01xx
[2,4)

 xxxx
[8,16)

0xxx
[4,8)

Fig. 4.2: Kademlia buckets and binary tree for 16 nodes.

The buckets can be made narrower in order to reduce look-up time at
the cost of maintaining a larger routing table (using b bits instead of 1
for each bucket), thus having distance ranges of [j · T, (j + 1) · T) where

4.3. Broadcasting in DHTs 47

T = 2160−b·(i+1) for j in (0, 2b) and i in [0, 160
b). Each look-up iteration gets

b bits closer to the target.
When looking for a target contained in a certain bucket, a node can

use any of the contacts in the bucket as the next hop, because all of them
are closer to the target that the node is. This is, again, a consequence of
the use of the XOR metrics for distance calculations and, as before, it is
different from the case of Chord, where only the contacts with the lowest
IDs of a range can be used to search in the whole range (because they do
not know about the nodes preceding them). Moreover, Kademlia is able to
send requests to several contacts in parallel in order to gain redundancy and
reduce latency in the reply.

Kademlia orders the nodes in the bucket in terms of recorded uptime.
Older nodes are given preference for queries and new references are added
to the contact lists only if there are not enough old nodes. This is due to
their observation that, in existing P2P networks, nodes which stayed for a
longer time in the past will tend to stay connected longer in the future than
recently joined peers.

4.3. Broadcasting in DHTs

There have been many proposals to enhance DHT systems with broad-
casting capabilities. Some of these works build new routing tables to create
an overlay broadcasting tree [94]. This represents a burden of additional stor-
age space and maintenance messages. We will not consider these approaches
since the tables offered by Kademlia already contain enough information to
build a tree that covers all nodes.

Some other systems are designed to work only with a particular DHT
[95, 96]. Since they cannot be directly applied to Kademlia, they are not
useful if this is the DHT of choice (e.g., in existing networks). There are
however some general proposals that aim to be applicable to any DHT. We
will describe them hereafter. In addition, we will also discuss recent work
that does address Kademlia specifically.

4.3.1. Partition-based Broadcasting

One of the first proposals dealing with DHT broadcasting in a general
way was presented by El-Ansary et al. [97]. They modelled look-ups as dis-
tributed k-ary searches where the ID space is divided in λ regions1 and the
query is forwarded to a contact in the region containing the searched key.
This contact will in turn divide the remaining space in λ subregions and for-
ward again to a closer contact. Broadcasting is achieved by just forwarding

1We use λ instead of the original K, not to confuse with Kademlia’s K contacts per
bucket.

48 Chapter 4. Distributed Hash Tables

data to a contact in every one of the λ parts and letting each contact do the
same within its own region. In effect, the k-ary decision tree is transformed
into a spanning tree. The algorithm is applied to Chord, where λ=2. The
tree depth (number of forwarding steps) is O(log2N).

The broadcasting tree produced by the k-ary search models is unbal-
anced. When a node tries to reach all of its contacts, it will send up to
O(log2N) messages while other nodes will send very few. If some nodes are
often the source of the broadcasts, the first contacts in their trees will suffer
from higher loads than other nodes. This is addressed by an new space par-
tition algorithm, according to which, each node sends only two forwarding
messages, effectively splitting the ID space into two parts each time (explicit
2-ary tree) [98]. This method achieves a balanced tree, with the same depth
of O(log2N). However, as we will see in Chapter 9, a balanced tree is more
fragile when random network errors are present.

Figure 4.3 illustrates the unbalanced and balanced broadcast algorithms
in a network of 16 nodes and originated at node 0. It is easy to see that, in
the first case, there is one node (0) that sends 4 messages, one node (8) that
sends 3 and the rest send fewer messages. In the second case, no node sends
more than 2 messages. However, the depth of the broadcast tree is the same
in both cases (4).

Different λ values can be considered [99]. With λ > 2, forwarding nodes
will suffer from a somewhat higher load (they send more messages) but
the tree depth will be reduced to O(logλN), achieving an overall latency
reduction. Such algorithm is regarded as general because it relies on DHT
primitives to look up contacts in each partition. This is correct but the need
to discover nodes before initiating a broadcast may increase latency. Original
k-ary search just sends messages to already known contacts and that is what
we aim to do with Kademlia too.

4.3.2. Prefix-based Broadcasting

Prefix-based DHTs are characterized by their routing tables: every node
keeps an entry for each possible prefix common to its ID (considering one
or several (b) bits for each step). Kademlia authors indicate that, although
described in different terms, Pastry’s prefix-based routing is very similar to
that of Kademlia. Actually, Kademlia’s buckets can be mapped to entries
in a prefix-based routing table. When b > 1 bits are used, however, Pastry
requires a second routing to discover the closest nodes from all sharing the
same prefix but differing in the final digit.

The algorithm described by Wahlisch et al. is meant for this kind of
prefix-based DHTs and, in particular, for Pastry [100]. The idea is to form
a tree based on an increasing common prefix. At level L, a node forwards
to all contacts whose ID has L bits in common with it. The same logic can

4.3. Broadcasting in DHTs 49

(a) Unbalanced k-ary broadcasting.

(b) Balanced partition broadcasting.

Fig. 4.3: Balanced and unbalanced broadcasting for a network of 16 nodes.

be applied to b bits symbols, instead of bits. The authors prove that, for
complete prefix-based routing tables, the broadcast achieves 100% coverage
with exactly one message per node. Although this is only applied to Pastry,
we will see that it can also be used with Kademlia, since, as indicated, it is
possible to describe it as a prefix-based system.

4.3.3. Related Work on Kademlia Broadcasting

A detailed study of the broadcast operation in Kademlia networks will
be provided in Chapter 9. Nevertheless, we would like to make a short note
on related work on the topic, as follows.

When we started to look at the possibilities for broadcasting in Kademlia
(with the objective of using it for our new distributed scheduling procedure),
we did not find any specific work on this subject, only general purpose algo-
rithms whose straightforward application to Kademlia was not completely
clear. For this reason, we decided to undertake a more in-depth study of the
problem and published our conclusions [101]. Later, Czirkos et al. presented
a broadcasting algorithm for Kademlia [102]. Although developed indepen-
dently, this algorithm turns out to be essentially the same as the one we

50 Chapter 4. Distributed Hash Tables

called bucket-based [101] (and which we will describe in Chapter 9). This is
probably not surprising since this is, we believe, the most natural way to
construct a broadcast tree in Kademlia. Moreover, like us, they also propose
to apply redundancy to increase the reliability of the algorithm, profiting
from Kademlia characteristics.

The contribution of Czirkos et al. is, in our view, valuable since they offer
an analysis of the expected broadcast coverage given the network failure rate
in the system, they consider—based on this analysis—different redundancy
factors and they perform a study of the latency of the broadcast when non-
uniform links are present. Nevertheless, their work does not offer a general
overview of the possible approaches for broadcasting in Kademlia, comparing
bucket- and partition-based protocols, with different division factors, and
thoroughly studying all relevant metrics for each case. Likewise, other churn-
fighting techniques, such as resubmissions, are not considered. Finally, they
have simulated their algorithms while we have run ours in a real system with
1,000 independent nodes.

4.4. Churn and Failure Rate

The main problem with the algorithms described so far is that a failure
in a node will cause a whole tree branch to miss the broadcast. This is
especially likely in networks where nodes join and leave the system often
(churn) and routing tables may contain stale information.

Out of the presented works, only two discuss churn [99, 102]. The first
one proposes a simple ACK mechanism: each node waits for ACKs from
the contacts it has sent a message to. Each contact will send an ACK only
when it has verified that every node within its broadcast subtree has re-
ceived the message (i.e., already replied with its own ACK). The problem is
that the latency to notice that a message was lost may be quite high. The
use of redundancy is also suggested [102]. This is also one of our proposed
techniques, and discussed in depth later. Finally, flooding techniques may
complement the core (structured) broadcasting mechanism to reach nodes
that have missed a message [103].

In Chapter 9, we will discuss and evaluate the application of these and
other techniques to broadcasting in Kademlia.

4.5. Evaluation Metrics

In order to assess the suitability of the different algorithms to the Kadem-
lia DHT and to discuss their characteristics, we need to understand which
are the most important metrics to take into account. Based on the literature
(see, e.g., all the references given along this chapter), we conclude that the

4.5. Evaluation Metrics 51

most important factors are the following:

Coverage: percentage of nodes receiving the broadcast message out
of the total number of nodes in the system. This is obviously the
most relevant metric for a broadcast protocol and in normal conditions
should always be 100%.

Messages to nodes ratio: ratio between the number of sent messages
and the number of nodes in the network. The higher this ratio is, the
higher the load put on the nodes and on the network is. Ideally, this
number should be 1.

Imbalance factor : ratio between the maximum number of messages
sent by any single node and the average number of sent messages per
node. As discussed earlier, if the imbalance factor is high, some nodes
may suffer from higher loads and impose more traffic on their network
links. Again, the ideal imbalance factor is 1.

Tree depth: Number of forwarding steps required to complete the broad-
cast. This is a measure of the latency of the broadcast, since the larger
this value is, the longer it takes for the message to reach every node.
Notice that this characterizes a given broadcast tree independently of
the delay of individual messages.

We will take all these factors into consideration in our tests with the
different protocols, in Chapter 9.

Wrap-up: We have presented the distributed hash tables and discussed their
attractive scalability and robustness properties. DHTs are used in large dis-
tributed systems to provide look-up and overlay routing services, especially
(though not only) in file storing and sharing applications. We are interested
in DHTs because we will use one for a distributed data cache and for a task
matching algorithm in our pilot architecture, discussed in Chapter 10.

In order to better understand how DHT systems work, we have reviewed a cou-
ple of representative examples, Chord and Pastry, and looked into Kademlia—
the DHT used in our architecture—in more detail. In addition, since our task
scheduling procedure requires to broadcast messages to the members of the net-
work, we have also discussed protocols to add support for this operation in
DHTs. These include partition-based, prefix-based and bucket-based algorithms.
Chapter 9 will study the use of these procedures with Kademlia, as well as the
application of additional techniques to avoid message loss due to churn or node
failures.

Part II

Architectures for Efficient
Data Access

Chapter 5

Evaluation of Data Access
and Task Binding

By describing the peculiarities and the challenges faced by data-intensive
workflows in scientific grids, the previous chapters have set the context of
our work. They have discussed related work and the current state of the art.
Now, this chapter prepares the reader for the first set of our contribution
work, by providing the necessary background information and our specific
motivations. Subsequently, it introduces our ideas for enhancement and the
lines of research that will be further developed in succeeding chapters.

Since the object of our study is the improved execution of data-intensive
workflows, it is obvious that the data to be processed/produced by those
workflows must be a fundamental factor in our analysis. Indeed, the task of
providing computational jobs with efficient access to large amounts of data
is one of the main challenges faced by many scientific workflows, specially in
the grid, where resources are diverse and geographically disperse. Providing
for adequate data access for jobs implies being informed about the resources
storing required files and incorporating that knowledge into the scheduling
process, as well as trying to make sure that storage systems are capable of
serving the data efficiently. Both aspects are discussed in Section 5.1.

Section 3.1 introduced the late-binding architectures and described how
they are now the predominant scheduling systems for all the major VOs
in WLCG. They offer clear advantages, such as robustness against resource
failure, interface homogenization and the ability to centrally and dynami-
cally assign priorities to the VO’s workflows. In Section 5.2, we study the
performance of executions following one approach and the other. In order
to do this, we develop an enhanced version of an existing analytical model.

Finally, Section 5.3 introduces the concept of micro-scheduling; i.e., al-
locating tasks to particular nodes rather than globally to resource centres.
The micro-scheduling techniques are actually required for our proposed data
cache, discussed in Section 5.1.3 and made possible only by using a late-

55

56 Chapter 5. Evaluation of Data Access and Task Binding

binding overlay.

5.1. Data Access

5.1.1. Collocating Jobs and Data

As seen in Section 3.3, data-intensive job management systems consid-
er data location to be an important parameter for job scheduling. This is
widely accepted by the community, generally because of the time wasted
transferring input data required by jobs. Chapter 6 analyzes the problem in
more detail, including other issues caused by extensive grid file replication,
and provides some experimental tests on data staging. Furthermore, we are
not only interested in the scheduling at the site level but also within sites
(WN level), in order to increase data access throughput for applications and
to protect the storage systems at the sites. This is further discussed in the
following sections.

5.1.2. Accessing Storage Elements Data

Even if WLCG storage elements are designed to store petabytes of data
and deal with hundreds of clients, they are not infinitely scalable and may
suffer from performance problems if they are exposed to a high number
of very active clients. This was discussed in Section 3.2.1. It is true that
the situation is better now that it was at the time that we started our
work, in particular at CERN’s Tier-0 (which was the use case that originally
motivated our research) but, still today, SEs are not immune to congestion
and performance degradation.

The response time and reliability of grid SEs cannot be described by a
constant function. Depending on the load they are put under and the access
patterns of the clients accessing the storage, the perceived performance of
the SE might be different. Since SEs are fairly complex pieces of software
and the technologies used for massive storage management are certainly
evolving (and so are the load levels the SEs must deal with), it is out of the
scope of our work to characterize the effects that stressful activities cause
on such systems. For us, it suffices to understand that these effects exist (as
experience has shown) and focus instead on studying how we can protect
ourselves from these problems and, if possible, avoid causing them.

In addition, as seen in Section 3.4, current trends in scientific grids,
such as the WLCG, show that VO workflows are nowadays subject to more
heterogeneous resource types and data access patterns. VOs are currently
often capable of running in the cloud, with expensive or suboptimal (low
bandwidth, high latency) network links to the VO’s mass storage systems.
Also, they are prepared to run on resources with no local storage at all

5.2. Early-binding vs Late-binding 57

(Tier-3 sites, volunteer computers), being obliged therefore to access remote
storage (through WAN), with expanded latencies. We would like to minimize
WAN data accesses when possible.

5.1.3. Pilots Data Cache

We propose to implement a data cache in the nodes executing VO’s
workflows, so that SEs can be relieved of some pressure and jobs can gain
some CPU time by being able to access input files locally. In addition, this
possibility may be even more interesting for cloud resources or sites with-
out mass storage if the cache helps to avoid some very costly remote data
transfers.

Jobs running on the grid consume a certain amount of disk space. This is
unavoidable, since jobs need to, at least, store their own code, configuration
files and produced logs. However, it is very frequent that, in addition, jobs
download (stage-in) some input files from storage services or that produce
data files as output of their execution. These files are usually of larger size
(several GB) and require the sites to provision worker nodes with sufficient
space for the expected number of jobs running concurrently on them. E.g.,
the CMS VO usually asks sites to guarantee at least 10 GB of disk per job
slot on a WN.

The idea behind our data cache is to take advantage of the space that
the WNs offer to the real jobs they are executing. Given that pilots cre-
ate an overlay on the existing resources, they can take charge of managing
a cache so that locally stored files can be reused by different tasks and
transfers from/to mass storage are reduced as much as possible. As we will
see, an effective usage of this cache requires also the application of micro-
scheduling techniques. We have proposed a new pilot-based late-binding
overlay system, implementing the cited data cache, called the Task Queue
architecture. Chapters 7 and 10 describe and evaluate this architecture and
the implemented pilot-based data cache.

5.2. Early-binding vs Late-binding

This section presents an analytical study of the performance of early-
and late-binding scheduling approaches, in terms of latencies and feasible
turnaround times. We discuss a model that evaluates these subjects and, in
addition, serves as the foundation for a further discussion on computational
task granularity and the importance of matching and scheduling delays,
presented in Section 8.2.

58 Chapter 5. Evaluation of Data Access and Task Binding

5.2.1. Modelling Early- and Late-binding Approaches

As a starting point, we will discuss the model proposed by Moscicki et
al., which tries to characterize early- and late-binding approaches in the
processing of known and finite user workloads on the grid [104].

5.2.1.1. General Workflow Execution Model

In the initial model, the workload can be divided into arbitrarily small
tasks. Grid jobs are submitted using traditional means and start to run after
some initial delay T si , which is different for each one1. The jobs then run
one or several workflow tasks for some time Tϕi until they finish. Notice that
the initial model assumes that the maximum runtime per slot, as enforced
by the local batch system, is long enough not to be taken into account. In
general terms, there is a time T ei , after the last computed task, in which
a slot is either idle or computing for a different workflow but anyway not
productive for the workflow at hand. This model is illustrated by Figure 5.1.

'

t

TφTs Te

1

2

K

...

Fig. 5.1: General model for task execution on grid slots.

Given the previous definitions, the formula for the completed workload
as function of time is:

W (t) =
∑
K

Wi(t) =
∑
K

∫ t−T e
i

T s
i

ϕi(s)ds =
∑
K

∫ Tϕ
i

0
ϕi(s− T si)ds (5.1)

where:

W (t) is the total work completed in t seconds (using all processors).

Wi(t) is the work completed in t seconds at processor i.
1The exact delay of an individual job depends on factors such as the latency of the

submission machinery, the queue length at the computing resources and the initialization
time of the task once on the computing slot.

5.2. Early-binding vs Late-binding 59

K are the available parallel computing slots.

ϕi(t) is the computing speed of processor i as a function of time

T si is the initial delay (scheduling, queuing, initialization) of the task
at slot i.

T ei is the time elapsed between the end of the task at slot i and t.

Tϕi is the time the node is computing, such that: Tϕi = t− T si − T ei .

To simplify, we will consider all processors to have the same constant
processing speed: ϕi(t) = ϕ. Thus, for a single slot:

Wi(t) = ϕ(t− T si − T ei) (5.2)

So, if L is the time taken for the workflow to complete, the total com-
puted work during L seconds, using K slots will be:

W =
∑
K

ϕ(L− T si − T ei) = ϕ(LK −
∑
K

(T si + T ei)) (5.3)

And so, if we know the workload W that we need to compute, we can
calculate the duration of our workflow with Equation 5.4:

L = W

ϕK
+

∑
K

T si + T ei
K

(5.4)

5.2.1.2. Early-binding

In early-binding, the workload to complete is divided in K tasks (each
one of duration W

ϕK), so that exactly one is sent to each available processor,
in order to complete the work as quickly as possible. When the last task is
finished, the workflow has been completed. This is illustrated by Figure 5.2.

L
Tφ

maxTe

1

i

j

maxTs...

... minTs

Fig. 5.2: Early-binding model for workflow execution on the grid.

60 Chapter 5. Evaluation of Data Access and Task Binding

As said, in this model, Tϕi = Tϕ (constant), so the sum T si + T ei is also
constant for every i. Furthermore, this sum must be equal tomax(T si), since,
for the pilot with the maximum T si value (last task), T ei = 0. Thus:

T si + T ei = max(T si) (5.5)

which is constant. So, we reach Equation 5.6:

L = W

ϕK
+max(T si) (5.6)

5.2.1.3. Late-binding

In late-binding, new tasks can be scheduled to a pilot as long as we still
have time left and the workflow has not finished yet. Since, in the initial
model, tasks can be as small as desired and there is no idle time between
tasks, we can fill the slot with useful work completely, exactly until the end
of the workflow.

L

1

i

j

maxTs...

... minTs

Fig. 5.3: Late-binding model for workflow execution on the grid.

As a result of this, T ei = 0 for all pilots and Tϕi is not constant but
dependant on T si . We can see this in Figure 5.3, where a shorter L is achieved
due to the higher contribution of all nodes except for the one with maximum
T s. Here, we have:

∑
K

T si + T ei
K

=
∑
K

T si
K

(5.7)

where T si can be considered random and the right hand side of the equa-
tion is the average T si value. Replacing in Equation 5.4, we reach:

L = W

ϕK
+ avg(T si) (5.8)

L is smaller in late-binding because the slot can be filled better. In
particular, wasted time is avg(T si), while in early-binding it is max(T si).

5.2. Early-binding vs Late-binding 61

This difference can be significant if the distribution of start delays has a
long tail, as it is usually the case with real grid workflows [104].

5.2.1.4. Discrete Model

Up to now, we have discussed the grid execution model for continuous
user workflows. But, in the real world, a workload cannot be divided into
arbitrarily small bits. Now, we enhance this model by considering discrete
tasks and inter-tasks delays. This is also mentioned by Moscicki et al. but
only some simulations are provided. In contrast, we derive an analytical
expression, which will be used in Chapter 8 for further study.

In the following, we will discuss the late-binding architecture, but most
of the reasoning can be equally applied to the early-binding case. In both, we
consider an initial delay T si (product of traditional submission and resource
queuing), the execution of a discrete task (of duration T t) and, between suc-
cessive tasks, a match-making and start-up delay (Tm). The main difference
between the two models resides in the value of Tm. In general, we will find
that this is higher for the early-binding case (see Section 5.2.2 for a more
in-depth discussion on this).

Figure 5.4 shows the execution of a workflow using a late-binding archi-
tecture. Task i is the one marking the end of the workflow. For other slots,
there is not enough time for even one more task, so there is a non-null T ei .
For one slot and Ni being the number of tasks run on slot i, we have:

L = T si +Ni(Tm + T t) + T ei (5.9)

L

1

i

K

Ts

...

... Te

1 2 ... Ni

TmTt

Fig. 5.4: Discrete model for workflow execution on the grid.

Since more tasks are scheduled while there is time for them, we will have
T ei ≤ Tm + T t and Ni = floor(L−T s

i
Tm+T t). For K slots:

KL =
∑
K

(T si + T ei) +
∑
K

Ni(Tm + T t) (5.10)

62 Chapter 5. Evaluation of Data Access and Task Binding

However, we also know that (considering all the K slots):

W = ϕ
∑
K

NiT
t =⇒

∑
K

Ni = W

ϕT t
(5.11)

This means that:

KL =
∑
K

(T si + T ei) + W

ϕT t
(Tm + T t) (5.12)

And:

L = avg(T si) + avg(T ei) + W

ϕK
+ W

ϕK

Tm

T t
(5.13)

If we introduce a new constant C = W
ϕK , then we have Equation 5.14:

L = avg(T si) + avg(T ei) + C + C
Tm

T t
(5.14)

Which is similar to the previous model (Equation 5.8) but with the ad-
dition of two new terms avg(T ei) and C Tm

T t . The first one represents the
inability to always fill the slot completely with tasks of finite duration. The
second one represents the time that is lost in match-making and task down-
load and start-up (proportional to the relation Tm

T t).

5.2.2. Workload Throughput Considerations

In the previous sections, we have focused on the completion time of a
finite workflow. This is especially interesting for individual scientists and
relatively brief workloads. However, focusing on VOs as a whole, we find
that these usually run jobs over long period of times and they are probably
more interested in throughput than in latency. Rather than asking how long
it takes to complete an individual workflow, they ask how much work can
be done with a given number of resources for a given time. That is why we
now apply our previous model to this situation and see how the early- and
late-binding models behave in this case2.

5.2.2.1. Early-binding

The early-binding model is illustrated by the Figure 5.5, which, for sim-
plicity, shows only tasks that belong to the workflows of interest. We can
think of it this way: at any time, the VO has K available processors; it is
not really important for our purposes whether these are always the same or
not (in general they are not). We see that, in this case, the resources run
tasks continuously. The only idle time is the inter-job delay Tm, between

2The contents of this section are not discussed by Moscicki et al.

5.2. Early-binding vs Late-binding 63

the end of a batch job and the start of the next one. The Tm value is the
key to the achievable throughput and several factors contribute to it: sub-
mission delay, queuing time, batch system job initialization time and VO
task initialization.

L

1

i

K

...

...

1 2 ... N

Tm Tt

Fig. 5.5: Workload throughput model on early-binding approach.

The first two factors are not trivial to characterize. If jobs are sent on
bursts, only the first ones to arrive at the site will exhibit a submission delay.
The queuing delay will depend on competing workflows and site priorities.
However, in general there will always be inefficiencies: some jobs are sent
just when needed (non-null submission delay) and, at occasions, they may
linger on sites queues longer than expected (i.e., at a particular moment,
fewer than K processors are active). All in all, we can just say that all these
delays are included in certain Tm value, which, in principle, should not be
high for VOs with available resources, but it is certainly not negligible.

5.2.2.2. Late-binding

The late-binding approach is illustrated by Figure 5.6, which shows how
a resource runs batch jobs and each one of those, in turn, runs M tasks
(which are assigned at runtime). This time, we find two different idle times:
Tm1 and Tm2 . The first one is an inter-job delay and the second is an inter-
task delay (between tasks run on the same batch job). It is clear that if
Tm1 = Tm (the delay in the early-binding model) and M > 1, then the
late-binding model will behave better than in early-binding if Tm2 < Tm.

We cannot provide firm estimates for all those values. However, it is clear
that if a VO has resources dedicated to it and jobs are sent beforehand to
the batch system queues, then Tm may be lower than Tm2 (task request,
matching and download to the pilot). If this is the case, then the early-
binding model may provide a higher throughput.

On the other hand, in the general case, VOs compete for resources and
the flow of jobs is not continuous, so with non-null submission delays, we
believe it realistic to assume that Tm2 < Tm. In addition, VOs using the

64 Chapter 5. Evaluation of Data Access and Task Binding

L

1

i

K

...

...

1 2 ... N

Tm2Tt

M

Tm1

Fig. 5.6: Workload throughput model on late-binding approach.

late-binding model may keep a pressure of pilots on sites3, so resources are
always available for newly created tasks. Combining this with the possibility
to reorganize priorities on the central task queue, we find that Tm1 < Tm

also and, thus, the throughput achieved with the late-binding approach will
be higher than that of the early-binding one.

Finally, M is the number of different tasks that a pilot can run sequen-
tially. It depends on the maximum allowed batch system runtime and the
length of individual tasks. Ideally, VOs could submit really long tasks, mak-
ing M = 1. In practice, site policies vary and VOs may need to play safe
and use shorter lengths to avoid exceeding the most restrictive time limits.
Furthermore, task length is often dictated by external factors (manageable
size of input/output data, experiment constraints, etc.) and is considerably
lower than allowed job times. Therefore, it is common that M >> 1.

5.2.2.3. Summary of Throughput Considerations

The achievable workload throughput by centrally managed VO work-
flows depends on the amount of time that the assigned resources are idle
during scheduling, queuing and initialization phases. This is more difficult
to characterize than in the latency model. We can speculate that, in gene-
ral, late-binding architectures behave somewhat better than early-binding
ones, however, this may not always be the case. What we know for sure is
that, in order to improve results, the Tm value should be minimized. For
late-binding architecture, this implies keeping a constant pressure of pilots
on the sites and making all efforts to reduce the task matching delays.

Finally, please recall that even in the cases where work throughput or
latency are not improved, the late-binding approach offers other advantages

3This approach will cause a fraction of the pilots to run empty, which means that
the VO will be consuming resources for no real work, which is clearly inefficient. VOs
must balance how many pilots they need to maintain on sites, depending on resource
consumption policies (or prices), amount of work to be done, etc.

5.3. Intelligent Micro-Scheduling 65

(robustness, homogeneity, dynamic priorities), which make VOs regard it as
a superior option than the traditional scheduling.

5.3. Intelligent Micro-Scheduling

Large grid scheduling traditionally regards sites as homogeneous sets of
resources. At most, a site offers a few different queues with varying job length
limits or different memory capacities but the number of resource groups has
to be necessarily very limited to make it manageable by both users and site
administrators [24]. However, in late-binding systems, the central server of
a VO assigns jobs directly to individual pilots, so that it can potentially
consider the particular characteristics of each node (rather than those of the
site or queue). We call this possibility micro-scheduling.

The primary motivator for our micro-scheduling work is that it is es-
sential for an adequate usage of the pilot-based data cache discussed in
Section 5.1.2. An effective data cache requires a high hit ratio and this is
only possible if computing tasks are scheduled to the appropriate execution
nodes—those holding the data they depend upon. Micro-scheduling (select-
ing the exact pilot a task will run on) is, thus, necessary for this goal. More-
over, even if not implemented at the moment, if a distributed file system
was available on the WNs and file-location information was made available
to our pilots, they could match input data requirements from tasks to stored
files, just as they do with cached files. This would represent a huge improve-
ment in terms of network requirements for the site. An evident candidate
would be HDFS, employed as SE in WLCG but disregarding its data locality
information (refer to Section 3.3.2 for details).

Nevertheless, beyond file location matching, micro-scheduling is a pow-
erful technique, usable in other interesting ways. A fine-grained task match-
ing would make it possible to select work for a pilot based on its precise
characteristics, such as memory, processing power, disk space, attached in-
struments, software licenses, etc. More particularly, information about the
jobs running in a pilot’s node could be used to balance the number of I/O-
bound and CPU-intensive tasks so that the WN was used more efficiently.
Or, now that the WLCG VOs are in transition from single-core jobs to
single-node but multi-core tasks, with the aim of improving the efficiency of
disk and memory management4, the pilots could also advertise the number
of available CPUs at a node to pull tasks of different sizes to the WN [105].

Notice also that even if traditionally scientific grid environments have
been fairly homogeneous environments (at least, in relation to operative

4This presents however a difficult problem in how nodes are filled. Imagine, e.g., that
a site is full and all the WNs are running single-core tasks but we have a few 8-core tasks
to run, we will need to drain an equivalent number of slots and while the last of the
single-core tasks finishes, all the other cores are idle, so resources are being wasted.

66 Chapter 5. Evaluation of Data Access and Task Binding

system and available middleware), VOs are now exploring the possibilities
to run in other environments such as the cloud or in volunteer computing
platforms. In such cases or in future ones, the range of heterogeneous com-
putational environments may increase and being able to match tasks and
resources with fine granularity may become more and more necessary for an
efficient usage of the resources.

Chapters 7 and 10 discuss the attainment and application of micro-
scheduling in our proposed Task Queue late-binding overlay.

Wrap-up: This chapter introduces some of the basic ideas that we have pro-
posed for our Task Queue architecture. The first one of these is the implemen-
tation of a data cache on the local disks of the nodes where pilot jobs are run.
This cache will be used to improve data access performance and protect storage
systems. The second one is the use of a fine-grained task assignment procedure,
so that particular nodes (rather than sites) are selected for task execution. The
immediate application of this capability is the consideration of data location
information for scheduling but other uses are possible.

In addition, the chapter discusses a model to compare the performance of early-
and late-binding approaches for workflow execution. The late-binding model
seems clearly superior for finite (individual) workflows while things are more
complex when looking at VO’s global throughput (though late-binding is in any
case preferred for other reasons). This performance model will be considered
again in Chapter 8.

Chapter 6

Data-location Aware
Scheduling

The key role played by the data in the execution of many scientific work-
flows, and specifically of those of WLCG, has been stressed several times
already. At this point, it seems clear that where the data is stored and how
it is accessed are essential factors for the allocation of computational tasks.
In the case of the grid, scheduling systems must consider which sites hold
the required data before submitting grid jobs.

This chapter presents our initial work on data-location aware scheduling.
It offers concrete evidence of the importance of this information and presents
a scheduler modified to use it in a more flexible way than WLCG’s WMS.
However, the problem of balancing the best computing resources and those
storing the needed data is fairly complex. More sophisticated solutions would
be required to tackle it in a more ambitious way. Hints on how these systems
could look like are provided.

As indicated, this is an early work. But, even if a traditional scheduling
approach was used (while we nowadays favour late-binding) and the work ex-
plicitly deals with inter-site—macro—scheduling (and we have later turned
our focus into micro-scheduling), we believe that the described issues and
the learnt lessons can also be of application to other task allocation contexts,
such as the mentioned ones (late-binding, intra-site).

6.1. Data Location Awareness

If grid jobs are scheduled to sites whose SE does not hold their required
data, the jobs need to bring the data to either that SE or the computing
node itself. In order to assess the impact of the transfer of data relative to
the total job turnaround time, we performed some transfer measurements
between two different grid sites—a nearby and a distant one—to the third,

67

68 Chapter 6. Data-location Aware Scheduling

local, site. We use the adjectives nearby and distant, in the sense that the
achieved data throughput is higher in the first case than in the second one.
This is typically due to a better network link connecting the sites (e.g., same
national network infrastructure or dedicated link), a smaller latency value,
or to more appropriate tuning of configuration parameters (e.g., properly
dimensioned TCP (Transmission Control Protocol) buffers). Transfers from
the local SE to the WN were also conducted.

In every case the replicated files had a size of 2.5 GB. These tests were
firstly performed in 2008. The results are summarized in Figure 6.1, which
shows the delays obtained for a series of transfer iterations. What we find
here is, firstly, that transfer to the WN take much longer than those to the
local SE; except for the replication from the local SE to a local WN (both
sitting within the same local network). This is to be expected, since storage
systems are designed and tuned precisely to transfer data, while WNs are
not optimized for that.

Fig. 6.1: Transfer completion times for various source and destination types.

The times in Figure 6.1 were measured for the copy of a 2.5 GB file.
Considering the CMS case as an example, we can translate this into 41.6
minutes of processing time1, though, some inefficiency and startup time
should be factored in. It is clear that the delays incurred by the transfers to
the local SE, as shown by the plot, are significant: more than 2 minutes for
the nearby SE (19 MB/s), which might be tolerable, and almost 24 minutes
for the distant site (1.7 MB/s), which does not seem acceptable.

Since these measurements show a particular case, let us mention here
that recent monitoring reports2 show values of 5 MB/s for average WAN,

1CMS reports processing speeds around 1 MB/s.
2http://dashb-wlcg-transfers-dev.cern.ch/ui/#date.from=201408120940&date.

interval=0&date.to=201408121040&tab=history_plots&vo=%28cms%29

http://dashb-wlcg-transfers-dev.cern.ch/ui/#date.from=201408120940& date.interval=0&date.to=201408121040&tab=history_plots&vo=%28cms%29
http://dashb-wlcg-transfers-dev.cern.ch/ui/#date.from=201408120940& date.interval=0&date.to=201408121040&tab=history_plots&vo=%28cms%29

6.1. Data Location Awareness 69

SE-to-SE, transfers in CMS3. If we take this number for the transfer rate,
the delay for the copy from a remote SE to the local one would be of 8.3
minutes (without considering some overheads for authentication, set-up and
ending).

No matter what exact transfer rate we use, it is clear that the delay
induced by the replication of the input data is not negligible in comparison
to the job processing time. This is the most obvious problem with on-demand
(triggered by jobs) data replication, however it is not the only one, as we
will see, as follows.

6.1.1. Data Replication and Management

Uncontrolled data replication, as demanded by running jobs, has other
undesired consequences apart from wasted CPU time. One of them is the
competition for storage and network resources, which should be devoted
to other tasks (e.g., distribution of fresh detector data). Another one is the
possibility that the existing storage space is exhausted, causing the abortion
of the jobs. Depending on the available storage capacity and VO policies,
these issues may end up being more problematic than the transfer delays.

Some of the works discussed in Section 3.3 showed that only by pay-
ing attention to both data transfer delay and job queueing/execution times,
optimal scheduling—i.e., minimal job turnaround time—is achievable. It is
sometimes more convenient for a job to wait for the replication of the input
data than to wait for a busy computing resource to offer a free slot where
to run. But we also indicated that estimating all these times is not always
feasible (definitely, not easy) on real production infrastructures. Notice how-
ever that even if we could optimize job efficiency successfully, we would in
general not minimize data replication, what, as just indicated, would cause
other problems related with storage systems themselves and overall data
transfers performance. This may not penalize the efficiency of a particular
job but it will in general affect the global efficiency of a VO. We therefore
believe that any algorithm assessing the convenience of the movement of
data should apply a factor to offset the effects that such data movement
may bring in addition to the unused CPU time cost.

The approach of EMI’s WMS was to always send jobs to where data is,
regardless of the situation of the computing resources [24]. The submitter
might indicate the required files and the WMS would make sure that only

3We have also seen more optimistic and more pessimistic reports

https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=
14&resId=3&materialId=slides&confId=5610

https://indico.egi.eu/indico/materialDisplay.py?contribId=
245&sessionId=53&materialId=slides&confId=1417

We believe however that 5 MB/s from a random WN is already a bit optimistic.

https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=14&resId=3&materialId=slides&confId=5610
https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=14&resId=3&materialId=slides&confId=5610
https://indico.egi.eu/indico/materialDisplay.py?contribId=245&sessionId=53&materialId=slides&confId=1417
https://indico.egi.eu/indico/materialDisplay.py?contribId=245&sessionId=53&materialId=slides&confId=1417

70 Chapter 6. Data-location Aware Scheduling

sites holding these were considered for execution. In this way, data move-
ments are minimized. VOs would arrange data location by other means,
for example by using their own DPS’s. This simple approach seems useful
enough for HEP experiments but it is suboptimal in certain cases where
jobs may land on congested or inaccessible sites. For instance, if only one
site owns a replica of the data the user is interested in and this site is down
or has many jobs waiting in the queue, then the user cannot run her analysis
(or it will take a really long time). In this case, though, a manual copy of
the data can be made (or requested to the central operations teams).

6.2. The GridWay Meta-scheduler

GridWay is a metascheduler that uses Globus core services to offer
higher-level functionality to applications and users, thus simplifying the use
of the grid [10]. GridWay offers a batch system-like command line inter-
face for users to submit, kill migrate, monitor and synchronize jobs, as well
as to watch information about available resources. GridWay was designed
with a modular architecture, in which several components may be loaded as
plugins. There are plugins for file transferring, job submission and informa-
tion retrieval. Thanks to these, GridWay is able to submit jobs to both web
services-based Globus resources and WLCG resources.

GridWay’s scheduling algorithm makes use of configurable system poli-
cies and per-job user conditions and indications. The latter are given in a
job template via requirement and rank expressions, similar to those of EMI’s
WMS, but with the limitation that, in GridWay’s job template, there is no
way a user can indicate any data needs.

6.2.1. Data-location Aware GridWay

To solve this shortcoming, a modified GridWay prototype was developed,
which defined several new functions for both the requirement and the rank
expressions. By using these functions, the presence and the size of needed
data could be taken into account in the evaluation of the computing re-
sources. Each of the added functions received the LFN (Logical File Name)
of the required file. The new functions were the following:

CLOSE_DATA(LFN): Requirement expression. For each CE, it was eval-
uated as true only if specified data was held by a local SE and as false
otherwise.

HAS_CLOSE_DATA(LFN): Rank expression. For each CE, it was evalu-
ated as 1 if specified data was held by a local SE and as 0 otherwise.

SIZE_CLOSE_DATA(LFN): Rank expression. For each CE, evaluated as
the size of the specified data if held by a local SE and as 0 otherwise.

6.3. Evaluation 71

This approach was more flexible than that of the EMI WMS, which only
allows for data needs to form part of the requirement expression; i.e., either
jobs are always sent to where data is or data location is not considered at
all. On the contrary, the modified GridWay allowed for the inclusion of data
functions in the rank expression as well. This means that the user (or VO)
was free to decide how to weight factors like data presence, processor speed,
number of queued jobs, etc. This made it also possible to include a custom
factor to offset excessive data movements, as described earlier.

The information regarding the location of data was obtained by querying
a grid data catalogue. In particular, our base implementation supported
queries to the DLI (Data Location Interface) [106]. Since the DLI did not
offer data size information, the SIZE_CLOSE_DATA function could not be used
with it. However, other catalogue types, like the LFC (LCG File Catalog)
were tested (and used in the evaluation of Section 6.3) and could have been
easily added to a GridWay distribution [107].

In order to avoid excessive catalogue queries, data location information
was cached. The entries in the cache contained a timestamp so that old
entries were discarded and queried again. GridWay was also modified to
inform the job about the list of all the files that were requested in the rank
expression but were not located in the finally selected destination. In this
way, the job was made aware that it might need to replicate those files.

As a summary of what has been described up to now, the diagram in
Figure 6.2 schematically represents the process triggered when GridWay’s
job template parser encountered a HAS_CLOSE_DATA function in the rank
expression. This process was followed for each possible destination host.
Firstly, the argument of the function was saved in the list of requested files
for the job. Next, if the required information was already in the cache and it
was not too old, it was used for the evaluation. Otherwise, the catalogue was
queried and the response cached. If any of the close (local) SEs associated
to the candidate destination held the specified data, then a True value was
returned. Otherwise, False was given back.

6.3. Evaluation

Several experiments were conducted in order to evaluate the functionality
and performance of our implementation. All were done using resources of
the WLCG infrastructure and standard EMI middleware.

6.3.1. Delay Introduced by the Catalogue Queries

Firstly, we measured the delay that the catalogue queries introduced in
the match-making process. Figure 6.3 shows the match-making time for a
series of jobs. In this example two required input files were queried in the first

72 Chapter 6. Data-location Aware Scheduling

Fig. 6.2: Activity diagram for the resolution of the HAS_CLOSE_DATA function
in GridWay.

attempt. On the fourth attempt, three additional files were included in the
ranking and were also queried for. In the rest of the cases, the requested files
were already in the cache, what greatly reduces the overall match-making
time. Moreover, Figure 6.4 shows that the match-making time was, in any
case, negligible if compared to the time it took the job to start running at
the selected resource.

6.3.2. Application of Different Scheduling Policies

We also checked that our prototype was able to implement different
policies. We considered three different sites: A, B, C. The first two had
faster processors (our test job took around 500 seconds to run there) while
the last one was slower (around 675 seconds per run) but this one held the
input data the job demanded. We repeated the test for sizes of data ranging

6.3. Evaluation 73

Fig. 6.3: Match-making delay in GridWay when catalog queries are added.

Fig. 6.4: Match-making delay compared to job submission delay.

from 3 to 405 MB (with the same processing speed) and for four different
policies described in Table 6.1. Some of these policies use the *CLOSE_DATA
functions, which get a positive value for sites holding required input data
and 0 otherwise.

In the table, (d) can be considered the general expression, where CPU_MHZ
indicates the speed of the processor, Kt is a conversion factor and Kp is a
penalty factor added to offset the general negative impact of data transfers.
Kt is used to estimate transfer delays depending on file sizes (thus, it should
be inversely proportional to the expected transfer rate), but also to make this
delay comparable to the CPU_MHZ value (i.e., how much shorter the job will
run given an improvement in the CPU speed). Certainly, finding a perfect
formula is impossible since one can never be sure how long the processing
or the transferring of certain amount of data will take. However, at least
there is a means for some balancing to be done and experience may teach
the most adequate values for the average case. In this example, our tests
revealed that using Kt = 0.0075 was appropriate.

74 Chapter 6. Data-location Aware Scheduling

Table 6.1: Policies.

Policy Requirements Rank
(a) none CPU_MHZ

(b) CLOSE_DATA(myfile) CPU_MHZ

(c) none CPU_MHZ + Kt * SIZE_CLOSE_DATA(myfile)

(d) none CPU_MHZ + Kp * Kt * SIZE_CLOSE_DATA(myfile)

Every rank expression can be seen as a particularizations of (d), with dif-
ferent values of Kp. For (a), we have Kp = 0, which means that destinations
are selected based on CPU only. For (b), Kp = ∞, since the CLOSE_DATA
requirement forces jobs to be submitted to the site storing the data (C,
in this case). For (c), Kp = 1, which means that job processing and data
transferring times are balanced, but no penalty is added to minimize da-
ta replications. Finally, for (d), we used Kp = 2, to penalize transfers by
doubling the score of the data factor for sites holding that data.

The results of the test are given in Figures 6.5 and 6.6, which show
the selected site for each case and the total turnaround time, respectively.
We can see how policy (a), which does not take data location into account,
always sends to sites A or B while policy (b) always sends to site C. However,
policies (c) and (d) select the first two sites for small data sizes and C for
bigger files.

Fig. 6.5: Selected site as a function of input data size.

Finally, Table 6.2 summarizes the average values obtained for job execu-
tion time and the number of file transfers that were required. As expected,
policy (a) obtained the worse results both in average job time and number
of transfers. Policy (b) avoided all data movement but it was not optimum
when input files were small. Policy (c) and (d) took wasted time into ac-

6.4. Coordinated Workflow and Data Placement 75

Fig. 6.6: Turnaround job time by policy.

Table 6.2: Average job time by policy.

Algorithm Average job time Number of transfers
(a) 799.4 10
(b) 687.4 0
(c) 648.4 5
(d) 674.0 3

count, with (c) obtaining the absolute minimum of average job time and (d)
trading a slightly worse result for a reduction in the number of transfers.

6.4. Coordinated Workflow and Data Placement

6.4.1. Data Placement System

We have shown that GridWay scheduler can be enhanced to use data
location information for its scheduling decisions. How this information is
actually used is responsibility of the submitter (via the requirement/rank
expressions). This solution is more flexible than that provided by previously
existing EMI’s WMS since the VO is the one deciding how to weigh data
transfers versus processing power or queuing times. For a general purpose
metascheduler, this is an important property. However, it is clear that the
resulting system is not perfect. Its most obvious limitation is that it cannot
estimate how long a transfer will take. If an infrastructure such as WLCG
offered a service providing reliable link information, this might be added as
a source for GridWay to compute foreseen transfer delays.

The other main problem with the described approach has been already
outlined earlier. It is manifestly suboptimal that each individual job per-

76 Chapter 6. Data-location Aware Scheduling

forms the transfer of the files it needs. This task is better achieved by a
data placement system. Moreover, a DPS is probably informed about other
factors, such as free space at the SEs, VO policies for data replication and
so on. Therefore, we think that the system could be greatly improved if,
instead of querying an external service for link status information, GridWay
could be enabled to query a DPS and also let it take charge of the necessary
transfers.

Fig. 6.7: Integration of a data placement system as information source for
GridWay.

The integration of a DPS in the scheduling process is illustrated by
Figure 6.7. We can see how GridWay would use the best_sites query to
ask for the costs associated to a given file (myfile) and the reply would be
the list of prioritized sites, each with an assigned cost for the transfer of the
files. In the example, some sites (A and B) already hold the file and are
given a null cost, while others (C, D, E...) could receive the file incurring in
certain cost, calculated based on link qualities, free storage, policies, etc. At
this point, GridWay could perform the match-making of job requirements
and calculate the rank for each resource in the normal way, but taking these
transfer costs into account. Optionally, GridWay could return the chosen
destination (D) to the DPS, so that it performed the data movement on
behalf of the user. Such a best_sites service would replace the current
query to the DLI.

6.4.2. Workflow Management System

If the DPS service to query for transfer costs was available, the indicated
approach for GridWay’s scheduling would probably offer the best possible
scheduling for a single job. This does not guarantee, however, that the adopt-
ed decision produces the best results from a VO point of view. Consider the
following example: A user submits 500 jobs, each of which requires the same

6.4. Coordinated Workflow and Data Placement 77

set of 10 input files, at a single site. This first site has only a few free CPUs
while another site with many idle nodes is ready to accept a replica of the
files. For a single job, it is probably best to submit it to the first site because
transferring all the files would cause too much overhead. Nevertheless, for
500 jobs, the time required to move ten files would be negligible compared
to let the 500 jobs queue at the first site. It would be more intelligent to
replicate the data while the first jobs are starting to run and schedule the
rest to the second site.

Fig. 6.8: Coordinated scheduling of jobs and data using a workflow manage-
ment system.

A possible solution to this problem would be to use a higher-level compo-
nent, perhaps a workflow management system, to take longer term decisions
regarding data replication and planning of jobs destination. This compo-
nent would get job requests as input, data information as feedback from the
DPS and VO rules as policies. It would then schedule data replication tasks,
which the DPS would execute and, by setting the requirement and rank ex-
pressions, instruct GridWay to allocate jobs as appropriate. The DPS and
the scheduler would work independently. The organization of such a system
is sketched in Figure 6.8.

Part of this scheme is actually already applied in WLCG. As discussed in
Section 3.4.2, the workload management system of ATLAS VO is capable of
requesting the replication of certain datasets if a large number of submitted
jobs plan to run on that data. CMS is also taking steps in the same direction.
This cannot be considered to be an optimization of the whole problem of job
scheduling and data placement but a helpful optimization of the otherwise
decoupled approach to both problems.

78 Chapter 6. Data-location Aware Scheduling

6.4.3. Decoupled Systems

The problem with the high-level workflow management system depicted
above is that it is really complicated to make it work fine in practice. As
already indicated, grid information is very dynamic and not always reliable,
VO policies can get very complex and, all in all, data management is a very
intricate science, with frequent rule exceptions. In WLCG’s reality, the high-
level strategical and operational decisions regarding data placement and job
scheduling policies are taken by humans, not by an expert application. Even
if this is very costly in terms of operational effort, it is sometimes the only
way to make the whole system work appropriately.

Given the practical difficulties presented by the coordination of job schedul-
ing and data movement, a more pragmatic approach may be followed. As
discussed in Section 3.3, such a strategy is proposed by Ranganathan et al.,
which suggests asynchronous replication of highly used datasets and simple
submission of jobs to data [41]. WLCG VOs are currently following a simi-
lar path by applying popularity-based automatic replication and so reducing
the human effort required by data distribution. In addition, thanks to the
improvements in WANs and the reduction of I/O latencies, VOs can now
complete this solution with restricted access to remote data. This is used
to access missing files or circumvent overloaded sites by diverting jobs else-
where and performing remote processing. The advantage of remote access
over data replication is that it does not consume free storage space in the
local SE.

Wrap-up: This chapter has discussed why location of input data must be
taken into account when allocating data-intensive jobs, not only to optimise
jobs efficiency, but also to avoid excessive data replication and the problems
that this entails. This idea motivated the development of an enhanced GridWay
metascheduler, which can incorporate data requirement information into the
scheduling decisions in a flexible way (able to apply different VO policies).

However, achieving an optimum data-aware scheduling is not a simple task.
Information about job duration and transfer times is usually not reliable and
data placement policies are complex. It seems clear that DPS’s should take care
of transfers but it is not so obvious whether a superior entity should coordi-
nate these with job scheduling or, on the contrary, should data placement and
workload management be completely independent. Current trends in WLCG
lie between these two extremes. Files are automatically replicated and placed
according to their past popularity but the scheduler is able to suggest the repli-
cation of some data to the DPS based on the requirements of queued tasks.

Chapter 7

Late-binding Overlay

Previous chapters have stressed that efficiently accessing data is one of
the main challenges of data-intensive workflows in grid computation. Not
only for data transfers between remote locations (through the WAN) but
also considering the data access within a site. It has been observed that
when many jobs try to access a Storage Element concurrently, this may
cause responsiveness problems in the SE, possibly creating a bottleneck for
the workflow processing and delaying its completion.

We have also discussed the advantages of late-binding overlay systems
for the scheduling of computational tasks in the grid and the reasons why
this solution has been chosen by all the large WLCG VOs to replace the
traditional submission mechanisms. In addition, we have seen how the pro-
cess of assigning real jobs to pilots can be used to implement a fine-grained
micro-scheduling, in which we select exactly where a task is run.

Building on all these concepts, the Task Queue architecture was proposed
as a new late-binding scheduling system, in which pilot jobs implement a
data cache with the aim of optimizing the access to data, improving workflow
turnaround times and reducing load on the site’s SEs. In order to take
advantage of these pilot caches, the TQ (Task Queue) must assign tasks
to the nodes holding their required input data, so micro-scheduling is a
requirement for the system.

This work was originated in the context of the WLCG, for the use of
the CMS experiment. At the time, the CMS Tier-0 workflows were the main
target of the new system, due to several reasons. Firstly, the latency of the
Tier-0 operations is critical (derived calibration constants are required to
reconstruct new data and disk buffers fill up if data is not processed in a
timely manner), so reducing it was a primary objective. Secondly, the SE
at the Tier-0 had been observed to occasionally become a bottleneck for
the workflow runs, therefore the data cache promise was a highly desired
feature1. Finally, the Tier-0 WNs were dedicated to CMS, which means

1As discussed in Section 3.2.1, the improvements in SE technology, the introduction of

79

80 Chapter 7. Late-binding Overlay

that this was a controlled environment, where very long pilot lifetimes were
guaranteed and large disk space could be allocated to each pilot, enabling
very effective data caches.

Even if the initial target of the new pilot overlay was to run CMS work-
flows (especially, at the Tier-0), the TQ architecture was designed to be
flexible enough to run other kind of jobs. Moreover, in order to evaluate the
system under different configurations and environmental circumstances, we
built a setup in which arbitrary workflows could be run and different storage
access conditions could be simulated.

This chapter discusses the proposed TQ system, from its architecture,
in Section 7.1, to the details of data caching, in Section 7.2, and micro-
scheduling, in Section 7.3. An evaluation of the whole system, both in the
CMS Tier-0 context and in more general scenarios is given on Section 7.4.

7.1. The Task Queue Architecture

7.1.1. Overview

The Task Queue system proposes to build a late-binding overlay for job
submission and scheduling using pilot agents. The pilots are submitted to
the grid resources using traditional mechanisms and retrieve real workload
at runtime. The pilots implement a data cache on their local disk to avoid
accessing the site storage services as much as possible. A fine-grained match-
ing of pilots (and the resources they represent, including cached data) and
the CMS tasks (real jobs) is performed by the central TQ server upon job
request, enabling the micro-scheduling of the workload. Figure 7.1 shows a
schematic representation of the proposed architecture.

Since the original target application for the TQ system was the CMS
workloads, the figure shows the classical components of CMS job submis-
sion, ProdAgent (older) and WMAgent (newer), as clients of the TQ. Instead
of having these components submit jobs directly to the grid sites, as they
normally would, new TQ plugins are added so that jobs are instead en-
queued as tasks into the TQ component. The new architecture did not aim
to replace the existing systems, but offered a way to enhance those with a
new solution. From the point of view of Prod/WMAgent, the TQ is just
another resource to submit jobs to. Conversely, the TQ manages tasks inde-
pendently of the client that enqueued them. Notice also that the TQ is not
a workflow management system. It is the client of the TQ who creates tasks

the EOS system at the Tier-0 and the optimizations of the I/O access patterns of CMS
applications have made most storage access problems at Tier-0 go away. For this reason,
the pilot data cache is no longer a priority for CMS, though the general conclusions of
our study are still valid. Moreover, we consider that our architecture could be helpful at
many different scenarios, as discussed throughout the document.

7.1. The Task Queue Architecture 81

Fig. 7.1: Overview of the Task Queue architecture.

and sets their dependencies. The TQ gets these and attempts to make the
best possible use of the available resources. The TQ is a generic solution,
not tied to the CMS machinery.

The TQ component is the core of the late-binding overlay. It keeps track
of all real jobs waiting to be scheduled and of their requirements. It also
knows about pilots running on the grid resources and about the data they
hold in their caches (file catalog). Finally, the TQ is the place where the logic
for the matching of tasks to pilots is performed. It is no surprise, then, that
this component gives the name to the whole system. In the following, we will
sometimes use the term Task Queue to refer to the complete architecture
and sometimes to designate this particular component (the context should
make the implied meaning clear).

The Pilot Monitor component periodically checks the status of pilots
and tasks in the system and computes the number of pilots to submit to
each site. Then, it requests the Pilot Manager to perform the submission.
The Pilot Manager is responsible for actually submitting the pilots, using
the traditional interfaces (i.e., direct job submission).

Once running on a WN, the pilot job contacts the TQ, using a REST
(REpresentational State Transfer) interface. It firstly registers itself, pro-
viding hostname and site information. Then, and for the duration of its job
slot, the pilot retrieves tasks for execution. These tasks often need to access
data located at the site’s SE or, if possible, directly from its cache on disk.

82 Chapter 7. Late-binding Overlay

The following sections provide more details about concrete aspects of the
TQ architecture. In addition, more in-depth information on the implemen-
tation and the internal architecture of the different components is provided
in Appendix A.

7.1.2. Pilot Management

The number of pilot jobs that should be submitted to a site depends on
the amount of jobs that are waiting in the TQ for that particular destination
and the number of slots at the site. In addition, certain predefined thresholds
are defined according to the resources at each site and policy constraints.
The Pilot Monitor component, responsible for monitoring the state of the
submitted pilots, calculates the required number of additional pilot jobs—
within the thresholds—and requests the Pilot Manager to submit them.

In order to perform this calculation, the Pilot Monitor counts with the
information of the state of submitted pilots (running or queued) and the
feedback provided by the TQ regarding the number of queued tasks, their
site requirements and the number of idle2 and active pilots.

Detailed information on the pilot release algorithm used by the Pilot
Monitor, as well as on the per-site thresholds applied to the calculations, is
given in Appendix A.3.

7.1.3. Pilot Job Operation

Once a pilot job has been scheduled on a worker node within an execution
cluster, it will perform some initial checks to verify that the environment is
ready to run real jobs. In the CMS case, among other things, it verifies that
the CMS software and the local file catalog are accessible. If all the tests are
passed satisfactorily, the pilot contacts the TQ at a well known endpoint
and registers with it. As a result, the TQ provides the pilot with a unique
ID. This ID will be used to identify the pilot in subsequent requests.

The pilots use the TQ’s REST interface to communicate with it. All
communications are started by the pilot, so that no incoming connections
into the worker nodes is needed (this is often a security requirement of grid
sites). Every request and response is conceptually considered a message, en-
coded in JSON (JavaScript Object Notation) [108] and follows a well defined
protocol. Every message is marked with a certain type and includes a series
of fields, which comprise a label and some contents. The type of a message
determines which fields are compulsory for the message (additional arbi-
trary fields are usually accepted, though probably ignored) and what type
of response is acceptable for a given request.

Once the environment has been setup and the registration completed,
2Idle pilots are those registered pilots that are not running a real job.

7.2. Data Caching 83

the pilot job is ready to request its first task. The pilot informs the TQ
about its characteristics and the TQ selects the more adequate task for it.
If there is no task available, the pilot just goes to sleep for some time before
trying again. This loop continues until a task is found or some configurable
threshold is reached and the pilot decides to shut down. When a task is
found, the pilot is informed about its specifications and is provided with a
task-specific URL (Uniform Resource Locator) to download its associated
sandbox (containing the real job code and any necessary additional files).
The pilot also receives a second URL where to upload the task’s completion
report and any produced log files. At this point, the pilot runs the real job
in a separate process and waits for its termination. When done, the pilot
informs the TQ about it and asks for another job.

The pilots continue executing tasks until they consume all the time al-
located by the site’s batch system. At that point, they inform the TQ and
exit. During all this time, the pilots send periodic heartbeat messages to the
TQ, so that this knows that they are still alive.

7.2. Data Caching

As discussed previously, the pilots composing the Task Queue overlay
use the available disk space at the WNs to build a data cache in order to
avoid (or alleviate) the problems that excessive concurrency may cause in the
storage elements of the grid. Files staged in or produced by tasks are stored
in the cache and can be reused by subsequent tasks. The pilot manages the
cache space, respecting a pre-configured threshold for the maximum size it
can reach. If there is not enough free space for the addition of new files or
if a periodic check detects that the cache has grown too big, old files are
removed until the used space falls below the maximum threshold. For every
file added or removed from the cache, the TQ is informed, so that the central
catalog is updated.

Regarding the cache replacement, our pilot jobs currently use a simple
LRU (Least Recently Used) policy, although this is configurable. Other ap-
proaches might be more useful, depending, e.g., on the application at hand,
but we have not studied this topic.

Real jobs run by the pilots will by default look for their input files in the
site’s SE. In principle, they would need to be modified so that they check if
the required files are already available in the local cache. In the case of CMS
workloads, however, this was not necessary. CMS tasks use a mechanism
called TFC (Trivial File Catalog) to discover how (which technologies) and
where (at what location) to access the data. The TQ pilots modify the task’s
copy of the TFC, so that, for cached files, the modified TFC instructs them
to read from the local disk, instead of resorting to the SE.

84 Chapter 7. Late-binding Overlay

7.2.1. Per-host Cache Sharing

Given the increasing density of CPUs in modern computers, it is every-
day more common that grid’s WNs run a relatively high number of con-
current jobs. It is therefore quite possible that several TQ pilots end up
running on the same WN. For CMS, this is especially true in the Tier-0,
where nodes are dedicated to the VO, so all slots in a worker node might be
simultaneously running TQ pilots.

Since a cache is much more effective if data can be accessed by different
pilots (increased cache hit ratio), we explored the possibility that all the
pilots on a given host could share their cache spaces. This was achieved by
having pilots creating Unix hard links to the cache directories of other pilots.
In this way, all the files are, in practice, part of all the different caches, and
they remain in the system even if their original owners delete them. A file
is only removed for real when the last link is deleted.

In order to create these links, pilots are informed by the TQ about other
pilots at their host upon registration. In addition, if the list changes, the
TQ provides updated information to the pilots in response to their next
heartbeat message. We called this configuration per-host cache. In this case,
the total cache space available to each pilot in a WN is a dynamic value that
depends on the number of pilots running at the same host. The formula to
compute this value is given by Equation 7.1:

Cache_Size = Max_Space ·Num_Pilots−Min_Threshold (7.1)

Though this configuration was implemented and tested (as shown by
the results of Section 7.4), it presents some practical problems, such as the
impossibility to create hard links between different file systems or, e.g., in
non-Unix machines. In addition, it complicates the logic of operation. Since,
as we will see in Chapter 10, we later developed a DHT-based system to share
files among all the pilots, even if running on different hosts, we abandoned
the per-host cache implementation.

7.3. Job Matching. Micro-scheduling

As discussed in Section 5.3, micro-scheduling is a requirement for an
effective usage of the data cache built on the TQ’s pilots. We also indicated
that micro-scheduling can potentially be applied to situations that go beyond
the scheduling of jobs to their required data (e.g., balancing I/O- and CPU-
intensive jobs or matching pilots according to the number of cores in a WN).
However, the matching of the tasks to the pilot nodes holding the required
data was the primary motivator for our work in this field and it is still
an excellent example of its application. Moreover, the efficacy of our data

7.3. Job Matching. Micro-scheduling 85

cache (the cache hit ratio) will serve as a meter for the quality of our micro-
scheduling algorithm. We will see this in our evaluation of the system, in
Section 7.4.

7.3.1. Micro-scheduling in the TQ Architecture

Tasks are enqueued in the TQ together with some requirements, such as
its preferred site for execution (usually, because they require some data at
the site’s SE) or their list of input files (LFNs). The requirements are stated
as a python logical expression that the TQ evaluates to true or false. Only
pilots satisfying the requirements are considered for running. In addition, an
arithmetic ranking expression is also associated with the tasks to evaluate
possible pilot-task pairs with a numeric value. The ranking expression can
make use of data evaluated at runtime, such as the list of files in the cache’s
host, and can even formulate things like if the hostname of the worker node
was included in the requirements, then add 1,000 to the rank value.

When a pilot job starts execution, it contacts the TQ and asks for a task.
The request to the TQ includes attributes such as the pilot ID, the execution
host, the site’s SE, the remaining TTL (Time-to-live) and the contents of
the data cache. With all this information, the TQ evaluates, for all the tasks
in the queue, which ones are eligible to run in the requesting pilot. Then, for
these, it computes their rank value for the requesting pilot. The task with
the highest associated rank is assigned to the pilot.

Notice that since the TQ serves one pilot request at a time, the assign-
ment selects the best task a pilot can match, but it cannot take into account
if other pilots would be better suited for that task or what is the globally op-
timum assignment of tasks and pilots. This is clearly a suboptimal solution.
Our more recent TQ architecture uses a different approach, as discussed in
Section 10.3.1.

Regarding the task data dependencies, there are two possible approaches
for the matching procedure. We could set the input files as requirements of
the task, so that it would not run until a pilot holding the files was found
or they could be included in the rank, so that it would preferably run on
a pilot with the files (or with the highest number of files) but, otherwise,
would just run in any other pilot. The latter option seems superior, since the
pilot with the files might take very long to become free or, worse, it might
not exist. In any case, in the typical workflow in a scientific grid, if a real
job does not find its files in the cache, it can always find them in the SE.

Notice however that by letting tasks run as soon as they are requested
by a pilot, even if this does not hold their required input files, the cache hit
ratio is severely affected. In order to fight this to some extent, our matching
algorithm implemented the following waitForData policy: prior to schedul-
ing a task to a pilot without the required data, the TQ checks if other idle

86 Chapter 7. Late-binding Overlay

pilots do hold the data; if that is the case, the task is reserved. This resem-
bles the delay scheduling discussed in Section 3.4. The contexts are however
different since our pilot cache does not provide multiple replicas of each file
and we cannot assume that tasks are short. For these reasons, we only wait
if a pilot with the required file is currently idle.

The waitForData policy is very demanding for the TQ, since it has to
compare the cache of all the pilots to the requirements of every task, for each
pilot request. This is not scalable and was discarded in favour of a distributed
cache, as we will see in Chapter 10, but it was used for the evaluation tests
of the centralized TQ architecture presented in Section 7.4.

7.4. Evaluation

7.4.1. Tier-0 Tests

Since the TQ architecture was motivated by the CMS use case, the first
objective of our evaluation was to validate its suitability to run CMS work-
flows from start to finish, as well as to analyze its performance in comparison
to the previously used architecture. This assessment was performed by run-
ning a set of tests that executed real CMS’s Tier-0 workflows at a dedicated
computing queue at CERN.

The Tier-0 workflow consists of three main steps: Repacker, PromptReco
and AlcaReco. The Repacker jobs reformat the binary data from CMS’s
data acquisition system and split the output into different primary datasets
based on physics information. The PromptReco jobs take this output as
their input and perform an initial reconstruction into usable sets of physics
data (e.g., particle properties or trajectories). The AlcaReco jobs filter the
data produced by the PromptReco jobs and perform some processing on the
resulting subset. Their output is used to dynamically align and calibrate the
CMS detector.

In each step, several jobs are created, depending on the number of physics
events in the input files. Each job produces a relatively small output dataset
compared to its input. It is inefficient to store and transfer small files to a
tape-based central SE, therefore, each step has a special merge job that gets
the output from multiple jobs and merges them into a single file, which is
then transferred to the SE. The creation and execution of all the workflow
steps is driven by data. The workflow starts execution whenever a new file
requiring processing is available. The subsequent jobs are created according
to the system policies, workflow rules and data availability.

7.4. Evaluation 87

7.4.1.1. Setup

A series of experiments have been conducted at CERN’s Tier-0 infras-
tructure3. For these experiments, a testbed comprising a cluster of ten ma-
chines has been used. Each of these machines is capable of running four jobs
in parallel. The CMS Tier-0 reconstruction workflow is used as a sample
workflow in these experiments. This workflow generates a total of 172 jobs,
requires 83.41 GB of input data and produces 112 GB of output data. The
jobs access CERN’s storage infrastructure (Castor) to store and retrieve
data.

All real jobs are enqueued in the global scheduler of PA (ProdAgent) but
two different configurations have been used. In the first one, the traditional
setup, PA submits the jobs directly to the local batch system. In the second
one, the newly developed pilots overlay is set as resource destination for the
real jobs (tasks) and pilots are automatically submitted to the batch system.

7.4.1.2. Results

The results of the described experiments are presented in Figure 7.2. We
can see that the workflow turnaround time has been reduced by 4% when
using the proposed system. This decrease is mainly due to the reduction of
the delays incurred in job submission and job status notification since the
pilot-based approach reduces the latencies (this will be further discussed in
Section 7.4.2.3). The improvement is small because, given the size of the
testbed, most of the jobs had to be queued in the batch system and, thus,
the impact of the shortage of the job submission delays was not noticeable.

Fig. 7.2: Turnaround time for traditional submission and new Task Queue.

3The experiments in Section 7.4 have been repeated several times and, unless otherwise
stated, all the values shown in the presented figures are the average of the measurements
while the error bars show the standard deviation of the mean.

88 Chapter 7. Late-binding Overlay

In these tests, it was not possible to measure the behavior of the pro-
posed system against parameters such as job failure rates, queuing times
or data access latencies. This is so because there was no additional load on
the SE instance used for these tests and it was not practically feasible to
artificially alter its access conditions. For this and other reasons, additional
tests were run in a more controlled environment, at the CIEMAT (Centro
de Investigaciones Energéticas Medioambientales y Tecnológicas) institute.
These tests are discussed in Section 7.4.2.

7.4.2. CIEMAT Tests

With the purpose of demonstrating the general applicability of the TQ
system and to gain flexibility, a new workflow engine, capable of running
arbitrary workflows, was implemented and a testbed was arranged, at the
CIEMAT institute, in Madrid, Spain. This allowed us to run a series of sim-
ulation tests that evaluated the impact of different storage access conditions,
data dependency patterns and caching configurations in the performance of
the new architecture.

7.4.2.1. Testbed

For the experiments, a new, lightweight workflow engine was developed
to replace the role of the PA. This system produces workflows of configurable
characteristics. It creates a series of jobs, enqueues them as tasks in the TQ
and monitors their evolution to produce new, dependent jobs, as required.
Figure 7.3 shows a simplified diagram of the complete testbed. The image
is very similar to Figure 7.1, with the PA having been replaced by the new
non-CMS workflow management system. In addition, the real jobs are not
typical CMS tasks, but a series of scripts specifically developed for the tests.
The details of this testbed are given in Appendix A.6.

The non-CMS jobs do not really consume CPU cycles or stress the lo-
cal SE. On the contrary, they pretend to spend time processing or accessing
storage, but in reality they just wait, idle, on the WN. By running these spe-
cially crafted jobs, we are able to easily modify their configuration in order
to simulate different external conditions. In addition, they are appropriately
instrumented to provide all the monitoring information in their completion
reports, so that the external machinery can automatically produce the de-
sired statistics and generate plots.

7.4.2.2. Configurations

Workflows. In these experiments, 120 concurrent pilot jobs were run.
The data-driven nature of CMS workflows was achieved by using steps. A
workflow is divided in such a way that jobs in one step depend on the output

7.4. Evaluation 89

Fig. 7.3: Architecture of the non-CMS Task Queue testbed, at CIEMAT.

produced in the previous one. For the tests in this section, only two steps
have been set up (step0 and step1). The jobs in step0 are generated and
scheduled first. They produce output files, which are stored in the SE and
in the local cache, if available. The jobs in step1 are only created when the
files they depend on have been produced. They will consume those files from
the SE or, preferably, the cache.

Three types of workflows have been used in these tests. They represent
three different types of data dependencies generally found in data intensive
scientific workflows and, particularly, in the CMS Tier-0 workflow. Each job
in these workflows produces a file of size 700 MB. The workflow types used
in our tests are the following:

Serial chain (labelled asW1): corresponds to a one-to-one dependency.
In this case, 80 jobs are run in step0, producing one file of output each.
This is followed by another 80 jobs, in step1, each depending on one
output file of step0.

Splitting (W2): each job in one step is followed by several jobs in the
following one (one-to-many dependency). In our tests, there are 40
jobs in step0 (with one file of output each), which are followed by 80
jobs in step1. Thus, two jobs consume parts of the same input file from
step0.

Merging (W3): This corresponds to a many-to-one dependency. In this
case, step0 is composed of 80 jobs, producing 80 files of output (one

90 Chapter 7. Late-binding Overlay

Table 7.1: Combination of delays and failure factors.

Config. Delay Failures SE Load/Condition

d1f1 d1 = 0.01 f1 = 0 Low/Normal
d2f2 d2 = 0.15 f2 = 0.03 Moderate/Medium
d3f1 d3 = 0.50 f1 = 0 High delay but no failures
d3f3 d3 = 0.50 f3 = 0.1 High/Worse

each), which are consumed by 40 jobs in step1. I.e., each job consumes
two files, from two different step0 jobs.

Storage Access Conditions. In order to analyze the behaviour of the
traditional and the new architecture as a function of the SE responsiveness,
we have equipped our non-CMS tasks with the functionality to simulate
different storage access conditions. Two parameters may be configured for
our tests: the delay factor and the failure rate. The first one indicates the
additional delay that SE access operations will cause on the job (comparing
to local disk access) while the second one represents the ratio of operations
that are not completed successfully, causing the failure of the job and, thus,
its resubmission. Combining these, we have considered four possible config-
urations. These are given in Table 7.1. In the following, their labels—d1f1,
d2f2, d3f1, d3f3—will be used to indicate the conditions under which a
test is run.

Note that the delay factors in Table 7.1 are average values. Each indi-
vidual job may experience slightly different delays due to multiple uncon-
trollable causes, such as the exact disk server being accessed or the effect
of concurrent operations of other users. We have modeled this by randomly
selecting job delays from a Gaussian distribution with the selected delay
factor for the workflow as its mean.

Caching and submission configurations. Three different job submis-
sion mechanisms have been used in the evaluation tests:

Direct submission: Traditional submission (without TQ).

Pre-allocated pilots: Pilot jobs are manually submitted and already
running when tasks are injected into TQ.

On-demand: Pilots are submitted by the Pilot Manager as a reaction
to task injection (therefore, there will be an initial delay before injected
tasks start to run).

For the cases where the TQ architecture is used, there is an additional
setting: the type of caching used by the pilots. The different possible config-

7.4. Evaluation 91

urations are to use an independent per-pilot data cache, to build and share a
per-host cache or, lastly, not to use any caching at all. In addition, if caching
is applied, the TQ may be configured with or without the waitForData
policy. In the following, all the tests where cache is used apply the per-host
configuration, with the waitForData policy enabled (except for those in
Section 7.4.2.5).

7.4.2.3. Submission Latencies

The plot in Figure 7.4 shows the number of running jobs as a function
of time, for a W3 workflow and for the different submission mechanisms.
There is an initial job submission delay for the direct and on-demand con-
figurations. This delay is due to the scheduling latencies introduced by the
middleware and the waiting time in the local batch system queues. Howev-
er, this delay is not present when the pilots are pre-allocated and already
waiting for tasks to run.

Fig. 7.4: Running jobs vs. time for different submission systems (W3
workflow).

Obviously, the results for pre-allocated pilots are the best ones. However,
the on-demand configuration also shows a huge improvement over traditional
submission. The reason is that step1 tasks can be run as soon as tasks from
step0 are completed. When direct submission is used, though, there is a big
gap between steps. This delay is introduced by the middleware: it takes a
long time for the submitter to realize the first jobs have finished. And once
this happens, dependent jobs need to go through middleware and batch

92 Chapter 7. Late-binding Overlay

system queues again to start running. In this particular case, the reduction
in the delays is more than 60% for the on-demand pilot submission and
more than 75% when pre-allocated pilots are used.

Certainly, modern grid middleware behaves now better than when these
tests were run. Also, we must note that these results are more spectacular
because the real jobs used in these tests are very short (their length is
comparable to the scheduling delays). However, the effect is real and it is
one of the reasons why pilot-based systems are now predominant in large grid
VOs. In any case, the main contribution of our TQ architecture with respect
to other pilot systems is the caching and micro-scheduling capabilities. The
following sections compare the behaviour of pilot systems with and without
data cache.

7.4.2.4. Execution Times

Figure 7.5 shows the effect of stage-in delays on job execution times for
different SE conditions, with and without cache, for a serial-chain workflow.
In these tests, the stage-in time represents either the time for downloading
a file from an SE or, if no download occurs, the time a job spends accessing
the SE and reading the file while processing it.

Fig. 7.5: Average job execution and stage-in time under different SE condi-
tions, with and without data caching (W1 workflow).

The plot shows that when the pilot cache is used, the results are better,
especially when the SE conditions are worse (d3f3). If the SE response is
good, there is little gain in getting input files from the local caches. We
can say that, to some extent, the use of the cache protects the jobs from
problems at the SE. Notice also that by using the cache, the number of I/O

7.4. Evaluation 93

requests to the SE is decreased; therefore, its use may, in the first place,
reduce the deterioration of the SE conditions.

Figure 7.6 shows the turnaround time of a complete workflow for the
same runs than Figure 7.5. It is clear that, except for d1f1, the cache ap-
proach provides better workflow turnaround time than the no-cache ap-
proach. An interesting fact to note here is that an increase in the failure
rate has a more significant effect on the turnaround time than an increase
in the delay factor. This is due to the fact that a failure in SE access causes
a job failure, which triggers its resubmission and, therefore, provokes new
scheduling and execution delays. This impacts the whole workflow makespan
but has no effect in the average duration of individual jobs.

Fig. 7.6: Workflow turnaround time, under different SE conditions, with and
without data caching (W1 workflow).

When the data cache is used, mosts jobs read their required files from
the local disk. This causes a reduction of the data access latencies and of the
number of failures during the stage-in time. However, the failures at stage-
out (writing output files data in the SE) affect all jobs, with or without
cache. This is the reason why the results obtained with high failure rates
are significantly worse than those with rare failures, even for the pilots using
the data cache.

Figure 7.7 shows the average job duration for different workflow types,
under the worse SE conditions (d3f3). Looking at the stage-in time in each
configuration, we see that the cache mechanism performs much better for a
workflow where the jobs show one-to-one dependency (W1) because the jobs
from step1 can be efficiently scheduled to the pilot jobs that hold the results
of the jobs from step0. For the workflows W2 and W3, the cache hit ratio

94 Chapter 7. Late-binding Overlay

is lower. In the case of W2, two jobs require the same data, but they will
probably end up running on different pilots. In W3, jobs from step1 may
be forced to read from two different pilots (reducing the chances that the
caches of both are local to its host). On average, for all the three workflows,
the system with the pilot cache behaves better than the one without it.

Fig. 7.7: Average job execution and stage-in time for different workflow types,
under bad SE conditions (d3f3), with and without data caching.

Figure 7.8 depicts the cache impact on the turnaround times of different
workflows, also under the worse SE conditions. Even if there is a greater dis-
persion of measurements, it seems safe to say that the pilots with data cache
help to improve the workflow execution time when the storage resources are
operating under stress.

7.4.2.5. Cache Hit Ratio

The cache hit ratio is the percentage of the read files that were found
in the cache. It is an essential metric to evaluate the effectiveness of a data
cache. Figure 7.9 depicts the cache hit ratio for different caching configura-
tions and types of workflows.

For the serial chain workflow (W1), the per-host (C1) cache and the per-
pilot (C2) cache with the waitForData policy yield hit rates above 99%
because jobs in step can be scheduled to those pilot jobs that are holding
the file they require as input. When the waitForData policy is not in use,
the cache hit rate is severely reduced (23%) because the TQ does not wait
for the pilot jobs with the data to request the job. Consequently, a task
is scheduled to a pilot job that may not be holding the required files in
its cache. This effect is observed for all three workflows. In the absence of a

7.4. Evaluation 95

Fig. 7.8: Workflow turnaround time for different workflow types, under high
SE load conditions (d3f3), with and without data caching.

global data cache, the waitForData approach seems fundamental to achieve
a good cache hit ratio.

The figure also shows that the efficacy of the per-host cache configuration
reaches a 74% hit ratio for the splitting workflow (W2), whereas the per-
pilot configuration achieves only a 50% hit ratio. Remember that, in W2,
each step0 task produces two output files and two step1 tasks consume them.
Since these two tasks are scheduled at barely the same time, they will, in
general, be retrieved by different pilots, so one of them will not find its input
file in the local cache.

In the case of the merge workflow (W3), each job in step1 requires two
input files produced by two different step0 jobs, run on two different pi-
lots. When the per-pilot cache is used, the maximum achievable hit ratio
is obviously 50%. The ratio could be higher for the per-host configuration.
However, since step0 files are randomly scattered among the pilots, the prob-
ability that two input files are found on the same WN depends on the density
of pilots per host and it is, in general, presumably low. In effect, in this par-
ticular case, we see that the per-host cache hit ratio is almost equal to that
of the per-pilot cache.

Wrap-up: We have presented the Task Queue system, a pilot-based late-
binding architecture, enhanced with data caching and micro-scheduling. By

96 Chapter 7. Late-binding Overlay

Fig. 7.9: Hit ratio for different cache configurations and workflow types.

evaluating the characteristics of each pilot against the requirements of the tasks
and the configured rank expression, the TQ is able to assign the most appro-
priate task to each pilot. As a significant example, a pilot will preferably get a
task requiring files stored in its cache.

A series of tests have shown that the implementation works as expected and
that workflow turnaround times are decreased when, thanks to the cache, fewer
accesses to the storage systems are required. This effect is more noticeable when
the SEs are congested and so access latencies are higher.

However, the effectiveness of the pilots data cache is very dependent on the
pattern of dependencies between jobs. For certain workflows, the results are
not really satisfactory. Moreover, if the costly waitForData policy is not used,
results are poor in almost all cases. These considerations and some scalability
issues not yet discussed, led us to implement a truly shared cache among all
the pilots in a given site. This will be introduced in Chapter 10.

Part III

DHT-based Late-binding
Scheduling and Data Sharing

Chapter 8

Evaluation of Data Caching
and Centralized Scheduling

Chapter 7 presented a new architecture for a pilot-based overlay with
late-binding scheduling. This system was called Task Queue and introduced
pilot data caching and micro-scheduling capabilities. Even if the system was
validated to provide the expected functionalities and satisfy the essential
performance requirements, some shortcomings were detected.

The following sections review the indicated weaknesses. Section 8.1 dis-
cusses the need for the pilots to share cached files in order to improve the
effectiveness of the cache. Section 8.2 analyzes the scalability issues of the
current centralized task matching algorithm, which have led to the develop-
ment of a new distributed scheduling method. Closely related to this prob-
lem, the dependency of the whole system on the availability of the central
server, which may constitute a SPOF, are studied in Section 8.3. Finally,
Section 8.4 examines whether the existing task scheduling procedure yields
the best possible association of tasks and pilots from a global point of view.

8.1. Distributed Data Caching

Chapter 7 pointed out that the achievable effectiveness of the data cache
(measured by the accomplished cache hit ratio) was conditioned by the de-
pendency patterns of the executed workflows. In some cases, it was not
satisfactory at all. The per-host cache was always more effective that the
per-pilot configuration but it still showed poor results for some cases. More-
over, the application of the highly demanding (in terms of CPU load put on
the TQ) waitForData policy was a necessary requirement for achieving an
acceptable cache hit ratio in all considered cases.

In order to overcome this, further reducing the required accesses to the
storage systems, we decided to provide pilots with the means to share the

99

100 Chapter 8. Evaluation of Data Caching and Centralized Scheduling

files of their caches. For this purpose, the pilots create a per-site DHT net-
work and register themselves (and the files they own) with it. In this way,
they can easily locate the pilot holding the file they need and fetch it. This
will be discussed in depth in Chapter 10.

8.2. Scheduling Overhead

Another possible limitation of the TQ system is its scalability. In the
architecture discussed so far, all pilots contact a single central server. More-
over, for each pilot request, the TQ component needs to scan all queued
tasks to find the most suitable one. This centralized approach is doomed
to suffer when operated at very large scales. The evaluation tests shown
in Section 7.4 were run on only 120 concurrent pilot jobs but experiments
like CMS manage a much greater number of simultaneous pilots and tasks.
Actually, as we will see later, when we increase the scale of these resources,
the TQ starts to show problems to run its centralized matching algorithm
within a reasonable time limit. In order to solve this, we have developed a
new distributed task matching algorithm.

This is actually not only a TQ’s problem but of most late-binding sys-
tems. VOs using the late-binding approach usually aim to have a single
central server from which tasks are pulled. This makes it easy to apply VO
priorities and adapt them dynamically. It also means that each scheduling
decision counts with all the available information (running pilots, queued
tasks). However, as the number of pilots and tasks increases, so does the
rate of requests to be served and—potentially—the complexity of the de-
cision for each request. In short, the central queue of pilot-based systems
may become a bottleneck for the scheduling and execution of large-scale
workloads [109, 110].

If we compare this to the traditional early-binding paradigm, we find
that, in that case, scalability is achieved by multiplying the number of sched-
ulers. The problem with this approach is that, in practice, it is not feasible
for all of them to maintain a consistent view of the resources at all times.
Moreover, their actions are uncoordinated, which leads in occasions to chaot-
ic competition for resources (some sites may be overloaded while others still
own free resources). Besides this, as already stated, enforcing VO priorities
becomes very complex since each submitter acts independently.

Existing pilot systems have already met this problem and have found
different ways to tackle it. Tasks may be grouped and evaluated in bulk or
pilots may be matched based on their site only [110]. In this case, micro-
scheduling is effectively being restricted or even given up. Another possible
technique is to assign tasks to pilots beforehand so that each request is tied
to a particular task, so no real matching is carried out [63]. This means that,
in fact, early-binding—rather than late-binding—scheduling is performed.

8.2. Scheduling Overhead 101

However, our TQ architecture aims to offer real fine-grained late-binding
micro-scheduling (if for no other reason, for the establishment of the pilots
data cache). Furthermore, the TQ’s task assignment process supports not
only task matching but also task ranking. This means that the pilot will not
get any task whose requirements it fulfills, but the best match, according
to a predefined ranking expression. Thus, semantics like run task preferably
on a pilot holding certain file (best match) but, otherwise, on any other
pilot (any match) can be supported. However, evaluating the requirement
and rank expression on all queued tasks for every pilot request is a CPU-
intensive duty, which can lead to TQ congestion and a rise in the time spent
for each request. While waiting for the assignment of a task, pilots are idle
and wasting CPU time. This delay is a scheduling overhead, which should
be reduced as much as possible. This fact can also be deduced from the
analytical model introduced in Section 5.2, as will be shown in Section 8.2.1.

It is because of these reasons that a new distributed task matching pro-
cedure was developed. This will be described in Chapter 10. As we will see,
this procedure requires that pilots are able to submit broadcast messages to
the nodes sharing their DHT network (in principle, those within the same
site). Since the selected technology for the file sharing was Kademlia and this
DHT (like many others) does not support broadcasting, we initiated a study
on the best possible way to add this functionality to Kademlia. This resulted
in a in-depth study of this problem (including several contributions), which
is captured in the discussion in Chapter 9.

8.2.1. Impact of Scheduling Delay: Optimal Task Length

Section 5.2.1 presented a model for finite workflow execution in the grid.
Considering discrete tasks and non-null matching delays, we reached Equa-
tion 5.14, which we recall, as follows:

L = avg(T si) + avg(T ei) + C + C
Tm

T t
(8.1)

Looking at the terms of the equation, avg(T si) is—like in the continuous
model—the average delay in the start of tasks, avg(T ei) ≈ T t

2 (limited by
0 and T t in every case), C is constant and C Tm

T t increases with Tm and
decreases with T t. If we now consider the workflow makespan time (L) as
a function of the task length, T t, we find that, in general, L decreases for
shorter T t due to the T ei term (by reducing the size of the task, the slot can
be filled more effectively). However, for very low values of T t, L increases
dramatically due to the Tm

T t term. In effect, Tm creates a limit to how short
our tasks can be (below this value, the execution time is dominated by the
time spent matching, downloading the task files, etc.). For a bigger Tm, the
lower limit for T t increases. Actually, in this simplified model, we can even

102 Chapter 8. Evaluation of Data Caching and Centralized Scheduling

calculate the limit as the minimum of the function. Deriving L with respect
to T t and making it equal to zero, we see:

dL

dT t
= 0 + 1

2 + 0− C Tm

(T t)2 = 0 (8.2)

T t =
√

2CTm (8.3)

Equation 8.3 can be used in Equation 5.14 to obtain the minimum L:

L = avg(T si) + avg(T ei) + C +

√
TmC

2 (8.4)

And if we use the following expression:

avg(T ei) = T t

2 =
√

2CTm
2 =

√
TmC

2 (8.5)

then we reach our final expression for the minimum L:

L = avg(T si) + C +
√

2TmC (8.6)

8.2.1.1. Simulation

In order to better understand the model, we have run some iterative
simulations and measured L as a function of T t. We have fixed the total
workload to compute, the processor speed and number of machines available
for computation. We have also set an average value for T si (this value does
not affect the shape of the resulting plot, it only moves the plot upwards or
downwards). We will use:

W
ϕ = 100, 000 ; K = 100

avg(T si) = 75 ; avg(T ei) = T t

2

We have iterated through a range of T t values, taking random T si and T ei
values for each one of the K slots and calculated their average to compute
the resulting time L—according to Equation 5.14. We have done this for Tm
values of 0, 3, 10 and 20. The resulting plot in Figure 8.1 shows total workflow
makespan time versus the task length, for different values of match-making
delays (Tm). In the plot, the minimum task length for each configured Tm
is marked with horizontal and vertical dashed lines.

We can see that for Tm = 0 (no matching delay), there is theoretically
no limit to how short we should aim our tasks to be. The shorter, the better,
although it clearly makes no sense to have tasks of zero length (T t = 0),
so the optimum would lie in an arbitrarily small—but not null—task. For

8.3. Pilots Autonomy 103

0 200 400 600 800 1000
Task length (seconds)

1000

1100

1200

1300

1400

1500

1600

M
ak

es
pa

n
(s

ec
on

ds
)

Tm=0
Tm=3
Tm=10
Tm=20

Fig. 8.1: Workload throughput model on early-binding approach.

the other cases, the simulation finds values that are close to the theoretical
limit calculated by Equation 8.3. Table 8.1 shows both the theoretical and
simulated values for these settings.

8.3. Pilots Autonomy

Due to the centralized nature of the original TQ architecture, the whole
system is very dependent on the availability of the TQ component, causing
it to be a SPOF. If this entity is not available, no pilot can register, acquire
new tasks or inform about completed ones. This issue can be dealt with
by setting high-availability configurations for the server or by making it

Table 8.1: Optimal task length and workflow turnaround time (seconds).

Matching delay (Tm) Model Simulation
T t L T t L

0 0+ 1,075 0+ 1,075
3 77.46 1,152.5 81 1,147.4
10 141.42 1,216.4 161 1,210.3
20 200.0 1,275.0 201 1,262.6

104 Chapter 8. Evaluation of Data Caching and Centralized Scheduling

redundant using database replication technologies.
The new architecture, which proposes a distributed task matching algo-

rithm, aims to reduce the pilot’s dependency on the TQ and thus increase
the robustness of the system against TQ failures or connectivity problems.
This will be discussed, including some assessments tests, in Chapter 10.

8.4. Micro-scheduling and Global Rank

In the centralized task matching procedure seen so far, the TQ receives
one pilot request at a time and selects a task for it (maximizing the rank of
the assignment). However, even if this work is done optimally (and timely),
it is possible that sequentially choosing the best task for each individual
pilot does not yield the best possible overall association. E.g., a pilot could
retrieve the best task from its point of view, but that task may be even
better suited for a different pilot. From a global perspective, we should try
to maximize the global rank, i.e., the sum of all individual ranks. The problem
of optimally allocating a set of tasks to a set of resources is actually known
to be an NP-complete problem [111].

If we have a look at what other pilot systems do on this regard, we
find that in general they also deal with pilot requests sequentially, so they
should suffer from the same problem. The case may be different if they
perform group matching or pre-assignments but, as already discussed, this is
no really late-binding micro-scheduling, so, depending on how fine we require
our assignments to be, the obtained global rank can be severely penalized.
It is also worth mentioning the case of the glideinWMS system, which does
not match one pilot at a time, but one task at a time instead [29]. Indeed,
the glideinWMS negotiator receives collected information about tasks and
resources and performs periodical matches but always iterating on tasks
(and only considering idle pilots). It turns out that for our data cache use
case, this method is actually better than iterating on pilots but that may
not be the case in other situations.

In general, considering all (or several) pilots and tasks at each scheduling
decision produces better results. That is what the new TQ architecture does.

Wrap-up: This chapter reviews the main limitations of the original Task
Queue architecture (and of other late-binding systems): reduced cache hit ratio
for some dependency patterns, scalability issues, excessive dependency on the
central queue availability and sequential assignment of tasks to individual pilots.
All these problems are tackled by the new architecture, discussed in Chapter 10,
equipped with a distributed data cache and a cooperative scheduling procedure.

Chapter 9

Broadcasting in Kademlia

In Chapter 4, we introduced DHTs, decentralized systems, frequently
used in P2P systems, and Kademlia, a successful DHT, used in real appli-
cations like BitTorrent. Our interest in DHTs derives from our intention to
implement a distributed data cache among the pilot nodes conforming the
overlay of our Task Queue architecture. We chose Kademlia for the task, due
to its convenient characteristics. Later on, motivated by the scalability is-
sues found on the TQ centralized model, we decided to use the DHT routing
functionality to implement a distributed task matching algorithm among the
pilots. This took us to a investigation on the broadcast operation—required
for the new task matching procedure—on Kademlia networks.

This chapter presents a detailed analysis of the possible approaches to
the broadcast operation in the Kademlia DHT. Section 9.1 and 9.2 review
the specific characteristics of Kademlia and the existing general-purpose pro-
posals for DHT broadcasting, focusing on their applicability to Kademlia.
Subsequently, Section 9.3 introduces our bucket-based broadcasting algo-
rithm and Section 9.4 discusses the problems caused by churn and message
loss and presents several techniques to fight them. Finally, Section 9.5 dis-
cusses the results of thorough experimental testing evaluating the shown
algorithms and churn-fighting techniques.

9.1. Particularities of Kademlia

We described Kademlia in Section 9.1. As indicated there, one of the
main characteristics of this DHT is that the distance between Kademlia en-
tities is calculated as the result of the XOR of their IDs. Among other things,
this means that unlike, e.g., in Chord, Kademlia distances are symmetrical
and a node can initiate parallel look-up operations (using several contacts in
the destination region). But this also implies that we cannot simply assume
that two nodes whose IDs are numerically close are also close XOR-wise. For
instance, the numerical distance between numbers 7 and 8 is 1, but their

105

106 Chapter 9. Broadcasting in Kademlia

XOR-distance is 15.
We have also indicated already that Kademlia routing tables are com-

posed of a series of buckets of K contacts. Each bucket contains nodes within
a certain distance range. In the simplest case, there is one bucket for each
bit of node identifier. This can be seen as a binary tree: the ID space is
successively split in two, increasing the number of bits in common with the
node ID by one. The buckets can be made narrower in order to reduce look-
up time at the cost of maintaining a larger routing table (considering b bits
instead of 1 for each bucket). Each look-up iteration gets b bits closer to the
target.

9.2. Existing Protocols

In Section 4.3, we described several general algorithms for DHT broad-
casting. These protocols aimed to be applicable to any DHT (or, at least, to
prefix-based DHTs). This section discusses their applicability to Kademlia.

9.2.1. Partition-based Broadcasting

As we saw, both k-ary and balanced partition-based algorithms set nu-
merical limits on the region a node forwards messages to. This is based on
the assumption that the first node in a region has a better knowledge of
it that the original sender, because it is closer to all the region’s members.
This is true for DHTs like Chord, which uses numerical distance between
IDs but, as we discussed above, it is in general not true for Kademlia, which
uses XOR distances. In particular, nodes within a Kademlia bucket are clos-
er to each other than nodes outside the bucket. However, nodes that lie on
the edges of two adjacent buckets are very close numerically but quite far
XOR-wise. This can be appreciated in Figure 9.1, which shows a binary tree
representation of a network of 16 nodes and the initial broadcasting par-
titions for λ = 3 and λ = 4. We can see that, when λ = 3, node 1000 is
included in the same region that node 0111 but not in the same one that
node 1010, even if, considering XOR-based metrics, 1000 is much closer to
1010 than to 0111.

As a result, PB (Partition-based) algorithms will surely work fine with
Kademlia if their key space regions map exactly to one or more buckets.
Otherwise, the sender may not have a contact in the region even it partly
overlaps with one of its buckets (because contacts may be located anywhere
in a bucket). Our tests will confirm that with λ = 3 regions do not always
map to buckets and there are cases where a tree branch is broken even in
the absence of churn.

9.3. Bucket-based Broadcasting 107

Fig. 9.1: Partition-based broadcasting trees for with λ = 3 and λ = 4.

9.2.2. Prefix-based Broadcasting

We already indicated that Kademlia can be described as a prefix-based
protocol. Moreover, although described in different terms, Pastry’s prefix-
based routing is very similar to that of Kademlia (buckets can be mapped to
entries in Pastry’s routing table). There is however a difference between the
two: when b > 1 bits are used, Pastry requires an additional routing phase
to discover the closest nodes from those sharing the same prefix but with
a different final digit. This does not happen in Kademlia, where a single
XOR-based routing algorithm is used from start to finish.

The broadcasting algorithm described by Wahlisch et al. is meant for this
kind of prefix-based DHTs and applied to Pastry [100]. The idea is to form a
tree based on an increasing common prefix. The algorithm can be also used
with Kademlia. The small difference in the last phase of Pastry’s routing is
not relevant when broadcasting, since all nodes in the last forwarding step
will be messaged. In fact, if this algorithm is correctly applied in Kademlia,
the obtained tree would be exactly the same as if we apply our BB (Bucket-
based) algorithm, which we describe in the next section.

9.3. Bucket-based Broadcasting

The most natural way to divide the key space in Kademlia is bucket-
wise. A broadcast initiator may simply send messages to a contact in each
bucket. Recipients will forward the message to its contacts in the buckets
within their own region. The identifiers of the nodes within the region that
have already been contacted are included in the message so that broadcast
is not sent to them again (to avoid loops).

Kademlia guarantees that, in stable conditions, there is at least one
known contact for every bucket where real nodes exist. Moreover, closer
buckets are narrower and a node knows all the peers in its containing bucket.
Therefore, by letting nodes send a message to each bucket where they know
a contact, a 100% coverage is obtained.

The only tricky part in proving that this algorithm works fine comes

108 Chapter 9. Broadcasting in Kademlia

from the fact that buckets are different for each node (since they represent
distances to the node). Thus, one must be sure that when a node sends a
message to a contact in one of its buckets, this contact will be able to map
this region to its own buckets to further divide it properly. We provide a
proof that this is the case for Kademlia in the next section.

Authors of [102] try to make the broadcasting process clearer by apply-
ing a transformation by which every node forwarding a message becomes
root (node 0) of its subtree. This is apparently the only difference with our
proposal, but both approaches result in the same broadcast tree.

9.3.1. Demonstration for the Bucket-based Broadcasting

The BB algorithm only works if every region to which a node sends a
broadcast message maps to a number of complete buckets of the recipient,
being these buckets closer to it (XOR-wise) than to the sender. We will now
prove that this is the case by showing that, given two nodes, A and B, with
T being the width of A’s bucket containing B, every node whose distance
to A lies in that bucket has a distance to B lower than T. This means that
B can just forward to nodes in its own buckets ranging from 0 to T.

In Kademlia, the distance between A and B is computed as AB = A⊕B.
A node with ID P belongs to A’s bucket [X1, X2) if AP ≥ X1and AP < X2.
By construction, buckets have ranges [j ·T, (j+1)·T) where T = 2(160−b(i+1))

for each j in (0, 2b) and i in [0, 160
b). This means that their width is T = 2n,

for some n below 160.
We will use the following XOR properties:
(1) Let a, b, n, k be integers. If a < k · 2n, b < 2n, then a⊕ b < k · 2n.
(2) Let a, b, n, k be integers. If a ≥ k · 2n, b < 2n, then a⊕ b > k · 2n.
(3) For a node A and a distance D, there is only one node X, such

that D = AX. Therefore, if a bucket’s distance range is D1 to D2, where
D2 −D1 = M , then there are exactly M IDs in the bucket.

Now, let us prove that for every point P such that BP < 2n, the distance
AP satisfies the following:

AP < (j + 1) · 2n (9.1)

For the demonstration, we will start with the following identity:

AP = A⊕ P = A⊕ P ⊕B ⊕B = A⊕B ⊕B ⊕ P = AB ⊕BP (9.2)

Now, we know that AB < (j+1)·2n, since B is contained in A’s bucket. Since
BP < 2n, we can apply (1) with k = j + 1 to AB ⊕ BP and Equation 9.1
is reached.

Let us now prove that, for every P such that BP < 2n, it holds that:

AP ≥ j · 2n (9.3)

9.4. Fighting Churn 109

We know that AP = AB⊕BP and that AB ≥ j ·2n, since B is contained
in A’s bucket. Given that BP < 2n, we can apply (2) with k = j to AB⊕BP
and reach Equation 9.3.

With Equations 9.1 and 9.3, we have proved that AP falls in A’s bucket,
for any P such that BP < 2n. Now, from (3), we know that the number
of points associated with A’s bucket is (j + 1) · 2n − j · 2n = 2n. The same
reasoning applies to the range BP = [0, 2n) and so it also contains 2n points.
It follows that the points in both ranges are the same.

9.4. Fighting Churn

Churn and node failures are the main issues that broadcast algorithms
have to deal with. Both factors cause loss of messages, either because they
are sent to a stale contact, they are lost by the network or because a contact
fails to forward them. In this section, we present a theoretical model to
calculate the expected coverage for broadcasts in Kademlia under failure
conditions. Then, we introduce techniques implemented on top of PB and
BB algorithms in order to overcome these problems and increase coverage.
In general, the use of these methods trades better coverage for an increased
latency or a higher number of messages.

9.4.1. Expected Coverage Under Failure Conditions

9.4.1.1. Probabilistic Model

Czirkos et al. developed a model to calculate the expected coverage of a
broadcast in a Kademlia network, depending on the rate of network failures
in the system [102]. If P is the probability of correct delivery of a single
message and D is the depth of the broadcast tree (dependent on the num-
ber of nodes in the network), the expected number of nodes receiving the
broadcast is:

E = (1 + P)D (9.4)

This model however only applies to the binary version of Kademlia (b=1)
and the tree created by the bucket-based algorithm. We have extended the
analysis to partition-based algorithms and arbitrary b values by realizing
that, in fact, the probability that a broadcast reaches a node only depends
on the number of individual messages that must succeed to reach it. The
nodes in the first level of the broadcast tree have a probability P of receiving
the message, the nodes in second level have a probability P ·P = P 2—since
two individual messages must succeed for them to be reached—and nodes
in level i will be reached with probability P i. The expected coverage for the

110 Chapter 9. Broadcasting in Kademlia

tree will be thus:

E = 1 +
D∑
i=1

niP
i (9.5)

where ni is the number of nodes per level in the tree (notice that we add
one for the node initiating the broadcast, which we can consider to sit at
level 0).

0000

0001 0010 0100 1000

0011 0101 0110

0111

1001 1010 1100

1011 1101 1110

1111

(a) Bucket-based tree

0000

0001 1000

0010 0100

0011 0101 0110

0111

1001 1100

1010

1011

1101 1110

1111

(b) Partition-based tree

Fig. 9.2: Broadcast trees for a network of 16 nodes.

We can thus build the broadcast tree for a given number of nodes, count

9.4. Fighting Churn 111

the number of nodes per level, add the probability that they are reached
and thus determine the expected coverage of the broadcast. As an example,
Figure 9.2 shows two possible broadcast trees for a network of 16 nodes.
Figure 9.2a shows the tree created by the BB algorithm and Figure 9.2b
shows the tree of a PB broadcast. The number of nodes per level at each one
is (1, 4, 6, 4, 1) and (1, 2, 4, 6, 3), respectively. This means that the expected
coverage is 1 + 4p + 6p2 + 4p3 + p4, for BB, and 1 + 2p + 4p2 + 6p3 + 3p4,
for PB. Notice that while the PB algorithm creates a balanced tree, this
causes more nodes to be moved to deeper levels in the tree and therefore
the expected coverage is lower than in the BB case.

We must indicate here that in our implementation, we have modelled
message errors as nodes failing to forward a message—rather than to receive
it. Thus, nodes at level 1 always receive the message and nodes at level 2
receive the message with probability P . The resulting expected coverage will
therefore be:

E = 1 +
D∑
i=1

niP
i−1 (9.6)

This coverage is somewhat higher than the one previously indicated. In
what follows, we will use this formula when computing coverage to be able
to compare with experimental results.

9.4.1.2. Coverage per Type of Broadcast

In order to apply the described probabilistic model to calculate the ex-
pected broadcast coverage, we have produced broadcast trees of different
heights for BB configurations with b=1 and b=3, and also for PB setups
producing the same tree depth (λ=2 and λ=8, respectively). Table 9.1 shows
the number of nodes per level and the resulting expected coverage for the
cases where there is a 5% and 10% error rate when forwarding a message.
Configurations with higher number of contacts in the first steps (higher b or
λ and BB rather than PB) achieve better coverage.

In order to check the validity of these estimations, we can compare the
result for a network of 1,024 nodes with the actual values measured in a
real Kademlia system with 1,000 nodes (experiments discussed in depth in
Section 9.5). Notice that the model was developed for a fully populated
network while in reality we have a few nodes scattered around a huge and
almost empty key space. However, since node identifiers are generated with
a hash function, they are uniformly distributed in the key space so the mod-
els should hold valid. Table 9.2 compares the expected coverage based on
the average number of nodes per level found in the tests and the one exper-
imentally measured). In every case, the coverage is calculated/measured for
5% and 10% failure rates. We can see that the results are similar to our
theoretical expectations (1,024 nodes case, at Table 9.1).

112 Chapter 9. Broadcasting in Kademlia

Table 9.1: Theoretical coverage per type of broadcast.

Type Nodes Number of nodes per level Reached Cover (%)

BB
b=1

16 1, 4, 6, 4, 1 15 / 14 94.8 / 89.8
64 1, 6, 15, 20, 15, 6, 1 57 / 52 90.3 / 81.5
256 1, 8, 28, 56, 70, 56, 28, 8, 1 220 / 188 85.9 / 73.7
512 1, 9, 36, 84, 126, 126, 84, 36, 9, 1 429 / 358 83.8 / 70.0
1024 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 836 / 681 81.7 / 66.5

PB
λ=2
b ∈ 1, 3

16 1, 2, 4, 6, 3 14 / 13 92.4 / 85.3
64 1, 2, 4, 8, 15, 22, 12 54 / 45 84.5 / 71.1
256 1, 2, 4, 8, 16, 32, 60, 86, 47 196 / 149 76.7 / 58.3
512 1, 2, 4, 8, 16, 32, 64, 120, 171, 94 373 / 269 72.9 / 52.6
1024 1, 2, 4, 8, 16, 32, 64, 128, 239, 342, 188 709 / 485 69.3 / 47.5

BB
b=3

16 1, 11, 4 15 / 15 98.8 / 97.5
64 1, 19, 44 61 / 59 96.6 / 93.1
256 1, 27, 148, 80 240 / 226 94.1 / 88.3
512 1, 31, 224, 256 475 / 440 92.9 / 86.1
1024 1, 35, 316, 608, 64 939 / 859 91.8 / 83.9

PB
λ=8
b=3

16 1, 8, 7 15 / 15 97.8 / 95.6
64 1, 8, 55 61 / 58 95.7 / 91.4
256 1, 8, 64, 183 234 / 214 91.8 / 83.9
512 1, 8, 64, 439 465 / 422 91.0 / 82.5
1024 1, 8, 64, 504, 447 907 / 800 88.7 / 78.2

Table 9.2: Nodes per level and coverage for 1,000 nodes.

Coverage (%)
Type Average nodes per level Levels Experim.

BB b=1 1, 10, 48, 122, 212, 247, 194, 108, 44, 12, 1 81.9/66.9 81.1/64.3
PB λ=2 1, 2, 4, 8, 16, 32, 64, 128, 238, 290, 171, 43, 3 69.1/47.2 68.1/47.6
BB b=3 1, 22, 161, 464, 326, 27 89.5/79.8 90.1/80.3
PB λ=8 1, 8, 64, 434, 454, 39 88.2/77.5 89.3/76.6

9.4. Fighting Churn 113

9.4.2. Empty Regions Re-assignment

By default, broadcasts ignore regions without contacts. In stable condi-
tions, this is safe, but in the presence of churn, routing information can be
momentarily inaccurate and new nodes may be unknown. The ERR (Empty
Regions Re-assignment) routine lets empty regions be handled by contacts
in close regions, in the hope that they may know about nodes still ignored
by the current handler.

The application of this algorithm does not increase latency or number
of messages so it can be safely added to the bare protocols. However, under
severe churn or failure conditions, it offers limited node coverage gain. This
can be seen in Figure 9.3, which shows the difference in coverage between
protocols with and without the application of the ERR technique. When only
churn is considered, ERR provides some coverage improvement, however,
when non detectable failures appear, ERR does not seem to offer a significant
improvement over their non-ERR counterparts (the dispersion is too high
to obtain clear results).

Stable 4h churn 1h churn 5% fail
rate

10% fail
rate

6

4

2

0

2

4

6

8

10

D
iff

er
en

ce
 in

 n
od

e
co

ve
ra

ge
 p

cg

BB
PB-2
PB-3
PB-4
PB-8

Fig. 9.3: Gain in node coverage when applying ERR.

We may regard ERR as an integrated improvement of the core proto-
cols rather than an additional technique. Therefore, we will not study it
separately in Section 9.5.

9.4.3. Redundancy

One of the advantages of Kademlia is that it can send several parallel
messages to a given region. If one message is lost, some other may reach its

114 Chapter 9. Broadcasting in Kademlia

destination. The advantage of this technique is that it adds no latency since
parallel messages are sent almost simultaneously. The drawback is obviously
an increase in the number of sent messages.

Notice that when redundancy is used, it may occur that a node receives
the same message several times. In order to ensure that nodes process mes-
sages (pass them to upper layers) only once, a unique identifier is given to
each one. In addition, a policy must be defined so that nodes forward on-
ly the first time they receive a message—F1 (Forward one)—or, otherwise,
forward it every time—FA (Forward all). In regard to the replication of
messages, there are also different possibilities: replicate only at the broad-
cast initiator—R1 (Replicate one)—or at every step, i.e., forward duplicated
messages to every handled subregion—RA (Replicate all).

Considering all this, we have four possible configurations: R1-F1 (Repli-
cate one/Forward one), R1-FA (Replicate one/Forward all), RA-F1 (Repli-
cate all/Forward one) and RA-FA (Replicate all/Forward all) (notice that
Czirkos only considers RA-F1). We can immediately discard the RA-FA
option because it would lead to an explosion of messages on the network.
However, although perhaps not so intuitive, we can also discard the first
combination, R1-F1, because it causes a coverage reduction instead of a
gain. Indeed, even in the absence of churn or failures, a node may be missed
because redundant messages are discarded. We will call this effect paths
interference.

An example of the effect is shown in Figure 9.4, which depicts a broadcast
with a redundancy factor of 2, reaching a 16-node subregion. In the matrix,
rows represent nodes with different IDs, columns indicate their state after
each forwarding step and messages are drawn as arrows. The ID space is not
fully populated and empty positions are marked with dashed lines. Present
nodes are filled with a light colour when they have not received the broadcast
and with a dark one when they have. In the example, two identical messages
arrive at nodes 0010 and 0111, which forward it to the upper and lower halves
of their region. Looking at the upper part, we see that both nodes contact
the same destination (0000). This node will discard one of the messages
and forward the other one. Unfortunately, in the second step, node 0000
randomly chooses node 0111, which has already processed the broadcast and
will thus discard it this time. Node 0000 does not have any other contact in
the upper part of its handled region so it does not send any other message.
Nodes 0100 and 0101 have missed the broadcast.

This effect has been confirmed experimentally and that is why the R1-F1
policy for redundancy configuration has not been considered for the eval-
uation tests in Section 9.5. Actually, the paths interference also affects the
RA-F1 configuration in some cases but, as we will see, the replication at
every step is, in general, enough to compensate for it.

9.4. Fighting Churn 115

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Fig. 9.4: Paths interference when using redundancy with R1-F1 policy.

9.4.4. Direct ACKs and Resubmissions

In our bare implementation of the protocols, a node forwards a broad-
casting message and forgets about it. However, in order to fight unexpected
failures, we have also enhanced the protocols with the sending of an ACK
as soon as a node has correctly processed and forwarded a received message.
If the ACK is not received, the sender will resubmit to a different contact
in the region at hand.

Direct ACKs add latency for each resubmission but not as much as
preceding ACK strategies. Our method requires a timeout adjusted to the
reply of the immediate recipient. In previous cases, the timeout had to be
big enough for the message to propagate through the whole subtree below
the node [99].

If only ACKs and resubmissions are applied, nodes should only receive
a message once, since no parallel paths are used. Only when a node fails to
be contacted or to forward a message, another contact is tried out. In any
case, if, for some reason (such as ACK loss), redundant paths were in place,
F1 would be the most appropriate policy for this case. The reason is that
instead of forwarding the same message again, it is better to discard it and
let the sender look for another contact to propagate the broadcast.

Indeed, if we apply this technique to the same 16-node region we saw
earlier (with two identical messages arriving at the area), we find that now all

116 Chapter 9. Broadcasting in Kademlia

nodes are reached. This is shown by Figure 9.5, where resubmitted messages
are represented by dashed arrows. The key point is the resubmission of node
0111 after its message to node 0000 was not acknowledged (because it was
a duplicate). This time, node 0100 is contacted and, in turn, it informs
0101. In this scenario with duplicated messages, ACKs cause some useless
resubmissions but they are discarded and perfect coverage is achieved after
a few extra steps (one, in this case).

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Fig. 9.5: Duplicated messages when using ACK and resubmissions.

9.4.5. Other Churn Fighting Techniques

Redundancy and resubmissions are simple yet powerful techniques to
fight churn and malfunctioning nodes. However, as described in Section 9.5,
they also present some limitations. In order to assess if there are ways to over-
come these, we have implemented the possibility to apply both techniques
at the same time. In particular, we have evaluated the R1-FA configuration
with the addition of resubmissions.

In order to assess a totally different approach, we have also implement-
ed a simple flooding technique that complements the structured broadcast
algorithm. The strategy is to let every node forward the received message
to a number of random contacts in addition to those indicated by the stan-
dard protocol. In this case, one must be very careful because the use of the
forward-all policy results in the number of messages rising in every step
and this may lead to a congestion of the system. If forward-one is applied

9.5. Evaluation 117

instead, the coverage results are very modest. As per our experiments, the
best outcome is achieved when a forward-some rule is used; i.e., when for-
warding a few (e.g., 3) of the duplicate messages that are received. This is
the configuration shown in Section 9.5.

9.5. Evaluation

9.5.1. Testbed and Setup

In order to test the performance of the described protocols and tech-
niques, we have built a real Kademlia system with 1,000 peers running on
50 physical nodes in a parallel cluster facility at the CIEMAT institute. A
master process instructs the nodes to start new peers, initiate a broadcast or
make peers leave the system. More than 12 000 CPU hours have been neces-
sary to gather the results here presented. Once the system is up and stable
(peers have joined the network and filled their routing tables), the master
sets the desired churn conditions by adding and removing peers at the ap-
propriate frequency. When a peer leaves the system, it does not come back
to life. No peer leaves the system during the propagation of the broadcast,
which anyhow completes quickly given that all peers run in a single multi-
processor computer. More details of the architecture and flow of operations
testbed are given in Section A.5 of Appendix A.

Three situations are studied: completely stable system (no churn), aver-
age node lifetime of 4 hours (joins and leaves every 14.4 seconds) or average
node lifetime of 1 hour (joins and leaves every 3.6 seconds). These numbers
do not reflect real patterns of nodes in well known Kademlia networks; they
instead try to match (or be under) typical worker nodes lifetimes in scientific
grid sites. This is the environment in which we have used Kademlia broad-
cast, in the algorithms of the TQ discussed introduced in Chapter 10. In any
case, the important point here is to assess the robustness of the protocols
and churn fighting techniques when routing contacts become stale.

We have also considered nodes failing to forward received messages. This
scenario is worse than pure churn because, after successful delivery, the
sender will in principle not look for alternative routes (unless ACKs and
resubmissions are applied). The cases where 5% or 10% of the nodes are
unresponsive have been tested.

The master asks random peers to initiate a broadcast every 15 seconds
during 10 minutes. The process is repeated 3 times. All the metrics described
in Section 4.5 have been measured for the bucket-based algorithm (BB) and
for the partition-based protocol with four different values of λ (PB-2, PB-3,
PB-4, PB-8). In every case, b=3 was used. We have set different churn and
failure conditions and studied the effects of using redundant paths (R1-FA,
RA-F1), direct ACKs and resubmissions and flooding.

118 Chapter 9. Broadcasting in Kademlia

9.5.2. Coverage under Different Conditions

Figure 9.6 shows the coverage achieved by the different broadcast pro-
tocols under different churn and failure rate conditions. The graph shows
average values and standard deviation values as error bars. The legend is
shared by all subplots.

Figure 9.6a compares the behavior of the bare protocols. The first three
measured cases (stable and churn conditions) show that the bucket-based
and partition-based algorithms with λ=2 or λ=8 achieve full coverage of the
nodes in the absence of churn and coverage over 98% even when churn is
present. With λ=4, the coverage is good in stable conditions but behaves
worst with churn. With λ=3, the results are worst in all cases. As discussed
in section 9.2.1, this was expected since only for λ=2 and λ=8 can the
forwarding regions and subregions be exactly mapped to buckets.

When random failures are applied (4th and 5th cases), all algorithms
show worse coverage and much greater dispersion. Configurations with nar-
rower regions behave better (PB-8 and, even better, BB) while partition-
based with λ=2 is the most fragile configuration. In this case, a failing node
causes a whole branch of the binary tree to miss the broadcast. This is well
in line with the predictions in Section 9.4.1

9.5.2.1. Flooding

Figure 9.6b shows the coverage results obtained when the simple flooding
technique is applied. Even with the best forwarding rule (forward-some),
the outcome is not very satisfactory. Especially for the configurations with
non-zero failure rate, the coverage is poor and the dispersion is huge. In a
structured network like Kademlia, it is more efficient to add redundancy or
resubmissions than random flooding.

9.5.2.2. Redundant Paths

In order to reduce the number of possible configurations to test, we have
established a fixed replication factor of 3. This is the typical redundant
factor in Kademlia but others could be used. We have tested two different
configurations: R1-FA and RA-F1. Figure 9.6c shows the node coverage with
the R1-FA configuration and Figure 9.6d shows the RA-F1 case. We can see
that the use of redundant paths helps to greatly improve coverage in all cases.
In the R1-FA case, results are worse when PB-3 is used and for the cases
where random failures are present. The RA-F1 configuration achieves better
results in general (and mostly almost perfect) except for the PB-2 protocol,
which suffers from the paths interference (mentioned in Section 9.4.3) more
than the other configurations. This is seen even in stable conditions.

9.5. Evaluation 119

Stable 4h churn 1h churn 5%
fail.

10%
fail.

30

40

50

60

70

80

90

100

BB

PB-2

PB-3

PB-4

PB-8

(a) Bare configuration

Stable 4h churn 1h churn 5%
fail.

10%
fail.

60

65

70

75

80

85

90

95

100

(b) Flooding

Stable 4h churn 1h churn 5%
fail.

10%
fail.

75

80

85

90

95

100

(c) R1-FA

Stable 4h churn 1h churn 5%
fail.

10%
fail.

75

80

85

90

95

100

(d) RA-F1

Stable 4h churn 1h churn 5%
fail.

10%
fail.

75

80

85

90

95

100

(e) ACKs

Stable 4h churn 1h churn 5%
fail.

10%
fail.

75

80

85

90

95

100

(f) R1-FA + ACKs

Fig. 9.6: Node coverage (%) by protocol with different configurations.

120 Chapter 9. Broadcasting in Kademlia

9.5.2.3. ACKs and Resubmissions

We have also implemented the resubmission of a message when an ACK
was not received for it. Figure 9.6e shows the coverage obtained with this
new policy. We see that there is an increased coverage in all cases but there
is some difference with the results observed for redundancy. Firstly, ACKs
fail to improve results for PB-3 as much as redundant paths do. Since these
failures are due to incorrect mapping of regions to buckets (and not failures
or churn), some contacts are simply missed and resubmissions do not help.
Redundant paths however may find their way to them. On the contrary,
ACKs achieve better results for PB-2 with non-zero failure rates. In such
cases, a branch is missed if all redundant paths come to a failing node even
if other contacts are working fine. ACKs make it possible to resubmit to
those. In other words, this technique is not affected by paths interference.

9.5.2.4. ACKs and Redundancy Combination

As we have seen, ACKs and redundancy achieve very good results but
the first obtains better coverage for the PB-3 protocol while the latter is
better for PB-2. We have also combined both techniques (R1-FA and re-
submissions) and used them at the same time. The results are summarized
in Figure 9.6f. We observe that coverage has been improved for all combi-
nations (and PB-2 in particular). Still, PB-3 is somewhat worse than the
others, but it is clearly better than with ACKs alone. In any case, based on
all the results we have seen, PB-3 does not seem like a very sensible protocol
choice in the first place.

9.5.3. Other Metrics

Apart from coverage, there are other interesting metrics to analyze. Fig-
ure 9.7 shows the imbalance factor, messages to nodes ratio and tree depth
of every protocol and churn fighting technique configuration.

9.5.3.1. Imbalance Factor

Figure 9.7a shows the results regarding the imbalance factor. As expect-
ed, the bucket-based algorithm presents a higher value than the partition-
based configurations. Among those, the imbalance factor increases slightly
with the value of λ. This factor does not seem influenced by redundant paths
with F1 policy and only slightly by the use of ACKs. When a FA policy is
applied, the factor increases a bit more, but we do not think this can be
considered significant (clearly minor compared to the use of a BB protocol).

9.5. Evaluation 121

 BB PB-2 PB-3 PB-4 PB-8
0

2

4

6

8

10
Base

Flooding

R1-FA

RA-F1

ACKs

R1-FA+ACKs

(a) Imbalance factor
 BB PB-2 PB-3 PB-4 PB-8

0

2

4

6

8

10

(b) Messages to nodes ratio

BB PB-2 PB-3 PB-4 PB-8
0

2

4

6

8

10

12

14

16

18

(c) Tree depth
BB PB-2 PB-3 PB-4 PB-8

0

2

4

6

8

10

12

14

16

18

(d) Steps to reach 90% of nodes

Fig. 9.7: Other metrics for different protocols and configurations.

122 Chapter 9. Broadcasting in Kademlia

9.5.3.2. Messages to Nodes Ratio

Figure 9.7b shows that all considered protocols are very close to the ideal
value of one message per node when no redundancy is used (ACKs alone
do not have perceptible influence here). When redundant paths are added
to the picture, the ratio increases to a value close to the redundancy factor
(3, in this case) if the replication policy is of type R1-FA. This was to be
expected. If resubmissions are also used, a slightly higher value is obtained,
due to additional resubmission messages being sent.

If replication in every step is used (RA-F1), the number of messages
increases significantly. Given that many redundant messages are discarded,
it is quite difficult to estimate this value theoretically but the plot shows that,
for 1,000 nodes and this replication factor, the final ratio ranges from 4 to 6
(doubling that of R1-FA). Finally, the flooding configuration also produces
many messages since it causes the submission of new random messages in
every forwarding step. The values obtained here are only limited by the
applied forward-some policy. If forward-all had been used, the number of
messages would have risen exponentially.

9.5.3.3. Tree Depth (Latency)

Figure 9.7c shows the tree depth information. The results make it clear
that the algorithms that use a higher number of forwarding regions achieve
completion of the broadcast in fewer steps. In this respect, BB and PB-8
obtain the minimum tree depth.

Simple redundancy (R1-FA) and flooding do not have a big impact in the
depth of the tree. However, resubmissions (with or without added redundan-
cy) do increase it. The reason is clear: to detect a failure, a node has to wait
for a timeout to occur, before resubmitting. For our tests, we have modeled
this by increasing the step number of a resubmission in 4 (corresponding to
a timeout of twice the round-trip-time between nodes).

Interestingly, in the RA-F1 configuration the number of steps is reduced
below that produced by the bare configurations. The continuous replication
increases the number of nodes reached in every step of the broadcast and the
whole network is covered earlier. The R1-FA policy also increases the number
of nodes in the first levels of the broadcast trees, thus reducing the count on
the last steps of the process. This is shown in Table 9.3, which compares the
average number of nodes per level of each configuration (taking the PB-2
protocol as an example). We see that the number of nodes in the last levels
of the R1-FA and flooding configurations have fewer elements than the cases
with no redundancy. It might happen that in some cases these techniques
also reduce the tree depth slightly, but not so much as RA-F1.

It is also important to notice that the previous depth values reflect the
global latency, i.e., the delay for the final nodes reached by the broadcast.

9.5. Evaluation 123

Table 9.3: Nodes per level by configuration for PB-2 and 1,000 nodes.

Configuration Average nodes per level

Nb. level 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bare protoc. 1 2 4 8 16 32 64 128 238 290 171 43 3
Flooding 1 2 6 17 45 98 185 259 236 114 30 6 1
R1-FA 1 6 10 15 22 41 77 134 235 279 150 28 2
RA-F1 1 6 28 88 127 166 202 188 128 13
ACKs 1 2 4 8 16 32 64 128 236 295 170 39 4 1
R1-FA+ACK 1 6 10 15 21 41 79 133 235 272 153 32 1

The nodes that miss the broadcast are not taken into account (otherwise
we would have infinite depth in many cases). This is not really fair since
the latency value of the configurations with best coverage corresponds to a
higher number of nodes. This is illustrated by Figure 9.7d, which shows the
number of steps required to reach 90% of the nodes that get the broadcast.
Since the last few nodes are the most difficult to reach, values are much
more even in this case (except for RA-F1 which still achieves a significant
improvement over all the other configurations).

9.5.4. Summary of Algorithms Evaluation

The results of our experiments show that in stable conditions BB, PB-2
and PB-8 achieve perfect coverage of the network. Even in the presence of
churn, the coverage is very good. As expected, the use of partition-based
algorithms with other values of λ (such as 3 or 4) produces worse results.
PB-2 also achieves the lowest imbalance factor but it produces significantly
deeper broadcast trees (trading load balancing for latency). In any case, the
imbalance factor of PB-8 is only marginally worse than that of PB-2 while it
achieves minimum tree depth, so it seems a good choice for most situations.
As for messages to nodes ratio, unless redundancy or flooding are used, all
protocols achieve the optimum value, 1.

When random silent failures are added to the system, things look differ-
ent. PB-2 algorithm appears as the most fragile option because the average
number of messages required to reach a node increases. As predicted by the
probabilistic model, configurations with higher number of nodes on the top
levels of the broadcast tree offer the best coverage, namely, BB and, next,
PB-8. The improvement achieved by the first one comes at the cost of a
higher imbalance number.

However, under message failure conditions, the use of redundant paths
and direct ACKs becomes a necessity. Both cause a dramatic increase in
node coverage: best results are obtained with RA-F1, followed by those of
ACKs and resubmissions. The use of ACKs increases latency in the propa-
gation of the broadcast while redundant paths increase messages to nodes

124 Chapter 9. Broadcasting in Kademlia

ratio instead. If the RA-F1 configuration is used, the tree depth is reduced
below the one achieved by the bare protocols, at the cost of an even higher
number of messages. When both redundancy and ACKs are used at the same
time, the coverage is excellent (even better than with RA-F1), the ratio of
messages behaves like with R1-FA and the tree depth is similar to the one
obtained with ACKs alone.

Therefore, depending on application requirements (in terms of latency)
and network characteristics (round-trip-time between nodes, average load of
the nodes), one method or another should be chosen. All things considered, if
load is not a problem or if latency is critical, the RA-F1 configuration would
be the best choice. But if our priority is to reduce the produced number of
messages, then ACKs alone seem a very interesting choice. Between these
two options, the combination of R1-FA and ACKs increases the ratio of
messages to nodes less than RA-F1 and achieves the best coverage, with a
somewhat higher latency. As a final remark, the possibility of using a simple
flooding technique does not offer very interesting results. It produces a very
significant increase in the number of sent messages but the achieved coverage
enhancement is far from impressive.

Wrap-up: We have analytically discussed and experimentally confirmed that
full coverage broadcasting, with optimum ratio of messages to number of nodes,
is achievable in Kademlia systems by using only the DHT contact tables. This
can be done by using our proposed bucket-based algorithm or by applying a
partition-based protocol, but only if the splitting degree (λ) is compatible with
the buckets configured in Kademlia.

The node coverage results are also very good when churn conditions are present
and can be improved even further by applying direct ACK and resubmissions
or by profiting from Kademlia’s characteristics and using simultaneous parallel
messages. They carry the cost of an increase in latency (ACKs) or ratio of
messages to nodes (redundancy). Overall best coverage results are obtained with
the combination of both techniques at the same time but care must be taken to
choose the appropriate forwarding policy since duplicate messages can interfere
with broadcast propagation.

Chapter 10

Distributed Data Caching
and Job Matching

Chapter 7 introduced the Task Queue architecture, a new late-binding
overlay that incorporated a data cache to reduce the I/O pressure on a site’s
SE and used intelligent scheduling to make tasks run on the nodes holding
their required input data. The described architecture however proved to
be very demanding on the central server, the TQ. In order to maximize
the cache hit ratio, the TQ must keep track of every data product in the
nodes and, whenever a pilot requests workload, all queued tasks must be
examined. We have observed that this can lead to severe matching delays
when the scale of the system (number of pilots and tasks) increases.

In order to overcome this problem, we have developed a new system
that offers several enhancements to the original TQ architecture. In the
new system, pilot nodes arrange themselves into a Kademlia network within
a site’s LAN. Pilots share the DHT and use it as common key-value store
(in particular, for the location of cached files) as well as to locate and reach
other nodes. In this way, pilots are able to retrieve their required input
files from other peer nodes, greatly increasing the effective hit ratio of the
cache. Moreover, the new inter-pilot communication capabilities have made
it possible to implement a distributed matching algorithm, by which pilots
in a site collectively evaluate, rank and assign computational tasks. The TQ,
freed from tracking cache files and performing the task matching, becomes a
much more scalable component and the pilots gain some autonomy from the
central server. The latter also means fewer wide area network interactions,
which becomes important when latencies are high.

The description and evaluation of the new architecture is the focus of
this chapter. Section 10.1 discusses the characteristics and enhancements of
the implemented Kademlia DHT. Section 10.2 comments on the pilot-based
distributed data cache and Section 10.3 analyzes the new task matching
procedure and its impact on the achievable global rank. Finally, Section 10.4

125

126 Chapter 10. Distributed Data Caching and Job Matching

and 10.5 present the results of a long series of tests assessing the performance
and main characteristics of the whole system.

10.1. Custom Kademlia Implementation

The architecture of the new TQ requires the use of a modified DHT for
both the shared cache and the distributed task matching procedure. Our
implementation of the Kademlia protocol introduces a few changes to the
original specification. Firstly, when a pilot needs to leave the system, it
sends a Leave message to its known contacts, so that they update their
routing tables, and it republishes its key-value pairs so that the storage
redundancy is kept. This contributes to a more proactive adaptation to node
departures in contrast to the expiration-based behaviour of pure Kademlia.
Secondly, if a Store message is received for an already known key, the new
value is appended to the existing one. This makes it possible to associate
multiple locations (replicas) to a single file, increasing the chances of later
retrieval. Finally, while Kademlia authors propose to expire newest contacts
first, based on the observation that typically oldest DHT contacts remain
alive longer, we apply a simple least-recently-seen expiration policy. We
do so because grid pilots are expected to have a fairly constant lifetime,
determined by batch system limits.

The intra-site matching and ranking process depends on the dissemina-
tion of the list of runnable tasks from the master to the workers (TaskList
message) and the collection of results by the master. This required a major
enhancement of the Kademlia protocol to add support for broadcast and ag-
gregation capabilities, which resulted in an in-depth study of the broadcast
problem, described in Chapter 9. In the current implementation, each node
divides the space it must broadcast to in eight regions and forwards the
message at hand to one of its contacts in each region. This means that, no
matter the size of the network, the master will never need to send messages
to (or receive from) more than eight workers. For those broadcasts that
require an aggregated reply, each receiving node keeps a table of expected
replies and a pointer to its parent node (the one sending the message to
it). When all the replies are received or after some timeout, the aggregated
result is sent back to the parent. Late messages are simply discarded but
this is not too serious: a pilot not getting a task in a given round just needs
to wait for the next call to come.

10.2. Distributed Data Caching

We have used the Kademlia DHT to build a distributed data cache, with
the following goals:

10.3. Distributed Job Matching 127

Relieve the Task Queue of the duty of keeping track of all the data
files in the pilots cache.

Make it possible for pilots to locate and fetch files from peer nodes
when required (increase cache hit ratio).

When a pilot job is started on a WN, it first contacts the TQ to register
itself. At that point, the TQ assigns a random Kademlia identifier to it
and provides it with a list of contacts at its site. With this information,
the pilot can initiate the procedure to join the corresponding network by
reaching those contacts and filling some entries of its DHT routing tables.
Correspondingly, it will be added to the tables of its peer nodes as necessary.
The node is now part of the Kademlia network and can ask for tasks to run.

The sharing of files via the DHT works as follows: When a new file is
produced, the pilot stores a key-value pair in the DHT, where the key is the
hash of the file name (or unique identifier) and the value is its location. This
information is replicated on a number of nodes (typically, three) that are
close to the key according to Kademlia metrics. When a pilot is assigned a
task for execution, it examines its data dependencies. Every required file is
first looked for in the local cache and, if not there, a DHT finding procedure
is initiated with the hash of the file name as argument. Once the location of
a replica is retrieved, the pilot fetches the file and adds it to its local cache.
For this purpose, every pilot runs a simple file server accepting requests from
other peers. All this procedure takes place before the unmodified real job
is started. At execution time, the job behaves as usual: it reads input data
from local cache or, upon failure, falls back to the local SE.

10.3. Distributed Job Matching

As discussed in Section 8.2, the heaviest duty performed by central task
queues, and in particular by our original TQ, is the assignment of real jobs
to pilots. The TQ can become a bottleneck for the whole scheduling sys-
tem. That is why we have designed a new DHT-based task assignment
architecture, with the following aims:

Reduce load on the TQ; avoid it becoming a bottleneck.

Reduce the interactions of the pilots with the TQ, increasing their
autonomy.

In our new architecture, there is a representative per site, called master
pilot or, simply, master. Since every pilot needs to register with the TQ on
wake-up, the TQ can assign the master role to the site’s first registered pilot
and inform the following ones about it. When the master pilot dies, a simple

128 Chapter 10. Distributed Data Caching and Job Matching

election process is carried out to choose the pilot with lowest identifier and
the TQ is informed about the result.

The master contacts the TQ and requests tasks for its site. The TQ only
needs to match those tasks with no data dependency (able to run on any site)
or depending on data held at the site’s SE. The description and requirements
of all the matching tasks are passed to the master, which broadcasts the
information to the rest of the site pilots (workers). The workers filter and
rank the tasks and send the results back to the master, which assigns a task
to each pilot, trying to maximize the sum of individual ranks, and informs
both the TQ and the workers about the mapping. The pilots proceed to
download the task assigned to them, fetch the necessary input files and run
it. When the task is finished, the pilots inform the master about it and
upload the resulting report. Figure 10.1 shows a simplified diagram of the
interactions among the different components of the system.

MASTER

TASK LIST

GET TASKS

LIST

TASK LIST

TASK RANKS

TASK RANKS

TASKS ASSIGN

TASKS ASSIGN

TASKS ASSIGN

DOWNLOAD TASKS

UPLOAD REPORTS

TASK END

WORKERWORKERTQFILE SERVER

SANDBOXES

TASKS INJECT

Figure 10.1: Simplified diagram of the distributed scheduling process.

From this description, we can see that the duties of the TQ are much
lighter now. Firstly, it only receives task requests from one node per site.
Secondly, these require a simple (bulk) selection based on a single criterion
(site) and not a complex matching process. Furthermore, since the master
node is in permanent contact with the workers, it can also inform about non-
responding or dead nodes and therefore periodic heartbeat messages from
workers are not needed anymore (just as the DHT meant the removal of the
file tracking reports). At this moment, the only worker messages requiring
TQ processing occur at registration, shutdown and task completion times.
Not only have we greatly reduced the number of requests the TQ must serve

10.3. Distributed Job Matching 129

but we have also eliminated those involving costly computation. Moreover,
it is also possible to avoid the worker’s task end messages by letting the
master inform about task completions in bulk. This has been actually im-
plemented in a further development of the system and its impact is studied
in Section 10.4.4. Finally, let us note that although the workers need to
download real jobs and upload completion reports, these interactions entail
no logical processing at the TQ other than the pure file serving/storing. In
other words, the TQ does not perform any state change so these duties can
be just performed by a separate file server.

10.3.1. Task Matching and Ranking

Even if with the new architecture pilots can fetch required files from
peer nodes, it is still better for tasks to land on pilots holding the files they
need, since reading from the local cache on disk should be cheaper than
through the network. In more general terms, we set the following goal for
our architecture:

Produce a global rank at least as good as in the previous architecture.

The procedure to assign tasks to pilots is in practice not very different
from that used in the centralized scheduling. As discussed in Section 7.3, the
requirement and ranking expressions are the key to select the best task for
each pilot. In fact, all the information the TQ uses for their evaluation is the
description of the task and the characteristics of the pilot. By broadcasting
task descriptions, individual pilots are able to match and rank the tasks
with exactly the same results as when the TQ did it centrally. Since this is
done on a per pilot basis, even complex matching and ranking functions can
be used with no scalability problem.

Notice however that with the old scheduling procedure the TQ would
match one pilot at a time while, in the new model, the master receives
information from all the pilots in a site and then performs a collective as-
signment, aiming for the best global result. Indeed, with the received rank
values per pilot, the master builds a rank matrix where the row and column
of each value corresponds to the evaluated task and the reporting pilot re-
spectively. Now the master needs to maximize the sum of a series of matrix
elements with the constraint that only one element per row and per column
can be chosen (a pilot can run only one task and a task can be run only
by one pilot). This kind of problems are known to be NP-complete but we
can choose to accept a suboptimal (but good enough) solution in order to
reduce the resolution time. In particular, we have implemented an algo-
rithm by which we iteratively choose the best possible rank and discard the
selected pilot and task. More formally, the pseudo-code for this would be:

1. m := Rank_Matrix.max()

130 Chapter 10. Distributed Data Caching and Job Matching

2. i, j := Rank_Matrix.find(m) # Row & column for value ’m’

3. Rank_Matrix.remove_row(i)
Rank_Matrix.remove_col(j)

4. If empty(Rank_Matrix):
Then: Exit
Else: GoTo 1

Since we are now manipulating a numerical matrix, the algorithm can
be performed quickly and produces quite satisfactory results. As indicated,
the previous centralized procedure matched one pilot at a time. We could
describe it in similar terms to those shown above. In particular, we would
just need to replace the first step of the preceding algorithm (find the matrix
maximum) with one that finds the maximum value of the first row. I.e.:

1. m := (Rank_Matrix.get_row(0)).max()

It is easy to see that the results obtained with the distributed architecture
must be in general better than those of the centralized one. In order to
confirm this, some tests have been performed and their results are presented
in Section 10.4.3. In addition, this is also reflected in the evaluation of the
cache hit ratios achieved with the TQ, as discussed in Section 10.4.2.

10.4. Evaluation

In order to evaluate the new architecture, a testbed capable of running
more than 1,500 simultaneous pilots was built at the CIEMAT institute.
Two sets of resources were used in the tests. The first one comprises around
600 slots from an Infiniband-based parallel cluster facility while the second
one includes nodes of the institute’s grid site, where around 950 jobs can
be run in parallel. In our configuration, the two sets are viewed as different
sites. More information about the testbed is given in Appendix A.6.

With the aim of comparing the scalability of the old and new architec-
tures, the same workflow types used in Chapter 7 have been run. These are
inspired by real data-driven WLCG workflows, which can benefit by the use
of a data cache. Tasks are chained in two steps. Every task produces a single
data file of 3 MB but those of the second step consume the data generated
at the first one. The average task duration is 3.5 minutes. The workflow
types are serial chain (each data file is read by a different task), splitting
(each data file is read by two tasks) and merging (each task consumes two
files). Unless otherwise indicated, all the described experiments show the
results from three independent runs of each workflow type.

The independent variables considered in the experiments are testbed
size and architecture. The size is defined by the number of tasks and pilots.

10.4. Evaluation 131

The values used for the tasks are 300, 1.5k, 5k and 10k, and, for the pilots
(including the two resource sets), approximately 100, 500, 1.5k and 1.5k,
respectively. As for the architecture, there are three different configurations.
The first one (pre-DHT) was presented in Chapter 7: the central TQ keeps
track of all data files and also performs the task matching. The second
one (centralized) represents an intermediate stage, in which the DHT has
been introduced and file location is tracked by the pilots, but matching is
still centralized on the TQ. Finally, our newly proposed system is labeled
distributed. In this case, files are tracked via the DHT and task matching is
performed by the pilots themselves using the new distributed algorithm.

10.4.1. Pressure on Task Queue and Scheduling Overhead

The first set of results addresses the scalability of the three architectures
under study. The presented measurements include the number of requests
served by the TQ, the scheduling overhead and the total workflow time, for
each of the configurations and testbed sizes. For all presented plots, the
error bars represent the standard deviation of the mean.

Figure 10.2 shows the amount of requests received by the Task Queue
during a workflow run. The value increases almost linearly with the number
of tasks in the workflow. In the pre-DHT configuration, each task causes
around 12 TQ requests. Pilots contact the TQ for both task retrieval and
file tracking. When the DHT is introduced but the task matching is kept
centralized, the number of requests decreases moderately (to 9 per task)
because no messages are sent to track file creation/deletion. Finally, when
the new distributed matching is used, the master pilot takes care of task
matching and heartbeat interactions and thus the number of requests de-
creases to around 5 per task. Remember that, with this architecture, not
only are there fewer interactions, but these are also lighter.

Relieving the TQ of the costly processing duties is the key to make it
scalable. Figure 10.3 displays the delay between the end of a task in a
pilot and the start of the next one. Since, in our tests, tasks are always
ready to be served to pilots (or otherwise there are no more to be run), this
delay is a measure of the scheduling overhead. We find that both the pre-
DHT and the centralized architectures behave nicely for small and medium
scales (around 5 seconds of overhead) but show worse performance (and
much higher dispersion) when the number of pilots and tasks increase. The
reason is clear: the TQ cannot keep pace with the increasing request rate
(more pilots), especially because each request demands heavier processing
(more queued tasks to review).

The distributed architecture however scales nicely and offers almost con-
stant inter-tasks delays. For smaller testbeds, this interval is somewhat
longer than in previous setups but remains low even for the largest testbed.
In fact, the delay is consistent with the period between TaskList messages

132 Chapter 10. Distributed Data Caching and Job Matching

300 1.5k 5k 10k
Number of tasks

0k

20k

40k

60k

80k

100k

120k
Ta

sk
 Q

ue
ue

 re
qu

es
ts

Pre-DHT
Centralized
Distributed

Figure 10.2: Number of TQ requests per architecture and testbed size.

300/100 1.5k/500 5k/1500 10k/1500
Number of tasks/pilots

0

10

20

30

40

50

60

70

80

In
te

r-
ta

sk
 d

el
ay

 (s
)

Pre-DHT
Centralized
Distributed

Figure 10.3: Inter-tasks delay per architecture and testbed size.

10.4. Evaluation 133

sent by the master (20 s). Even if this number is significant for our tests,
where the average task duration is 3.3 minutes, it would be negligible for
tasks in the order of hours (as expected in WLCG). Certainly, an increased
task length would also result in a reduced request rate, thus alleviating the
problems of centralized matching. Notice however that, first, this would not
reduce the long queue of tasks to match and, also, the average request rate
is proportional to the number of pilots but the frequency of the TaskList
messages is not. The DHT broadcast structure allows the master to com-
municate with a high number of nodes without any increase in the number
of messages it has to deal with. Moreover, the expected delay for the replies
is of logarithmic growth (due to the properties of the Kademlia broadcast).

The same scaling pattern can be appreciated in Figure 10.4, which com-
pares workflow turnaround times for the different cases1. The plot shows
softer differences than those of inter-tasks delay for small testbed sizes be-
cause task execution times are basically identical for all setups. However,
as the number of pilots and tasks increases, the results for pre-DHT and
centralized configurations worsen as quickly as before. This is due to the
inter-tasks delay telling only half of the story of the TQ congestion. For the
complete picture, we must refer to Figure 10.5, which summarizes the most
relevant data for an individual serial-chain workflow run of 10,000 tasks and
1,500 pilots, using the pre-DHT architecture.

300/100 1.5k/500 5k/1500 10k/1500
Number of tasks/pilots

0

10

20

30

40

50

60

Tu
rn

ar
ou

nd
 ti

m
e

(m
in

)

Pre-DHT
Centralized
Distributed

Figure 10.4: Turnaround workflow time per architecture and testbed size.

1Notice that in the last configuration shown in the plot, the number of tasks is doubled
from the previous setting (5,000 to 10,000) but the number of pilots is kept constant. For
this reason, the turnaround time increases significantly for all architectures.

134 Chapter 10. Distributed Data Caching and Job Matching

Figure 10.5: Pre-DHT architecture: slot occupancy and cumulative TQ
requests (top), inter-tasks delay and requests queue (bottom).

The upper plot of Figure 10.5 shows the number of running pilot jobs
versus time. When the workflow starts, all the pilots in the system contact
the TQ to request their first task and download it at barely the same time.
The TQ becomes overloaded and the time spent on each request rises. It
takes the TQ almost 10 minutes to serve them all. Only then can pilots
retrieve and start their tasks. This initial congestion is not reflected by the
inter-tasks delay metric because only the interval between tasks is measured
and these are the very first tasks on each pilot. The lower plot displays the
correlation of the TQ activity with the inter-tasks delay and the length of
the queue of pending requests. It also gives a feeling of the unpredictability
of the scheduling overhead with this configuration.

For comparison, Figure 10.6 shows a run of exactly the same character-
istics of the previous one but using the distributed architecture. This time,
the number of running pilots and the inter-tasks delay follow a much more
regular (and healthy) pattern and the queue of pending requests at the TQ
is consistently kept very low during the lifetime of the workflow.

10.4.2. Cache Hit Ratio

Since the original motivation for the TQ architecture was to reduce the
pressure put on SEs, it is important to evaluate how the new architecture

10.4. Evaluation 135

Figure 10.6: Distributed architecture: slot occupancy and cumulative TQ
requests (top), inter-tasks delay and requests queue (bottom).

behaves with regard to the ratio of files read from the DHT/local cache in
relation to the total number of reads.

Figure 10.7 displays the cache hit ratio for every architecture and testbed
size. The configurations using the DHT have an almost perfect record of
cache reads for every case because tasks can retrieve files from other nodes.
With the pre-DHT architecture however, the hit ratio is considerably lower
since tasks can only access files on its own disk. It is interesting to note that
the hit ratio increases for larger testbeds. For brevity’s sake, we will not get
into details here, but we are aware of some race conditions that may cause
a cache miss on the first second-step task that is run on a pilot. Since in
the large testbeds the ratio of tasks to pilots is higher, these misses have a
smaller relative impact.

Figure 10.8 shows the ratio of tasks reading from the local cache. The
pre-DHT configuration behaves exactly as in Figure 10.7 since no DHT reads
are possible in this case. This time, however, the centralized architecture ob-
tains similar results. This is natural since both setups use the same matching
algorithm. For the distributed case, though, the hit ratio is much better and
it does not vary much with the testbed size. As discussed in Section 10.3.1,
the master matches all known tasks and pilots at regular intervals and it
can perform a better global matching than when serving requests one at a

136 Chapter 10. Distributed Data Caching and Job Matching

300/100 1.5k/500 5k/1500 10k/1500
Number of tasks/pilots

0

20

40

60

80

100

D
is

tr
ib

ut
ed

 c
ac

he
 h

it
ra

tio
 (%

)

Pre-DHT
Centralized
Distributed

Figure 10.7: Distributed cache hit ratio per architecture and testbed size.

time. The race conditions mentioned earlier for the first set of second-step
tasks are less significant with this algorithm and the results are similar for
workflows with either low or high number of tasks.

Notice also that the dispersion of results for every case is relatively high.
This is due to the lower outcome of the merging workflows in comparison
to those obtained with serial chain and splitting. This is reflected by Fig-
ure 10.9, which shows local cache hit ratio results again but this time only
for the distributed architecture and separating the different workflow types.
The ratio for the merging workflow is significantly lower than the other two.
The reason for this is that merge tasks must read two input files and, in
general, these files will be located at different pilots. In cases like this, DHT
reads are the only option to reduce the load on the SE.

10.4.3. Distributed Matching Ranking

As described in Section 10.3.1, the TQ distributed scheduling uses a non-
exact matching algorithm, which provides a good but not optimal solution
(in order to decrease its response time and make it usable for real-life work).
Still, this procedure provides better results than the one used for centralized
scheduling. In this section, we present some tests that assess and compare
both algorithms.

10.4. Evaluation 137

300/100 1.5k/500 5k/1500 10k/1500
Number of tasks/pilots

30

40

50

60

70

80

Lo
ca

l c
ac

he
 h

it
ra

tio
 (%

)

Pre-DHT
Centralized
Distributed

Figure 10.8: Local cache hit ratio per architecture and testbed size.

300/100 1.5k/500 5k/1500 10k/1500
Number of tasks/pilots

0

20

40

60

80

100

Lo
ca

l c
ac

he
 h

it
ra

tio
 (%

)

Distrib-serial
Distrib-split
Distrib-merging

Figure 10.9: Local cache hit ratio per type of workflow and testbed size.

138 Chapter 10. Distributed Data Caching and Job Matching

10.4.3.1. Tests Description

The TQ scheduling problem can be reduced to the maximization of a
rank value resulting from the addition of the individual ranks assigned to
the different pilot-task pairs (with the restrictions that one cannot assign a
task twice or assign two tasks to a single pilot). For a given problem, we can
express the different assignment combinations as a matrix of size NxM with
one row per pilot (N), one column per task (M) and rank values as matrix
elements. We can then apply our algorithms with such matrices as input and
obtain a rank score (the higher the rank, the better the algorithm). Also, we
can calculate the real maximum by applying a LP (Linear Programming)
solver, in order to have an ideal rank to compare with. Notice that we
cannot simply use this LP solver in real production since, for large matrices,
this algorithm takes inadmissible long times.

In order to assess the quality of our algorithms, we will apply them to
different test matrices of varying sizes. We will measure the rank obtained
with each algorithm and how long it takes to achieve that result. We will
use two types of matrices. First, matrices with random elements (from 0 to
Rmax; Rmax being the maximum individual rank). In a second run, matrices
with most elements having value of Rmax

10 but a few (≈ 1
N) having a value

of Rmax. The rationale is that most tasks can run on any pilot (low but
non-zero rank) but one of them is better fitted for the task (Rmax). Since
this is not deterministic, for a few tasks, all pilots have a low rank; also for
a few tasks, there may be more than one pilot with a high rank.

10.4.3.2. Results with Random Matrices

The results for the rank assessment with random matrices are shown in
Figure 10.10. The delay incurred by each algorithm is displayed by Fig-
ure 10.11. We see that the ranks achieved by both the distributed and the
centralized algorithms are very close to the absolute maximum of the LP
solver. The delay however is vastly lower (about two orders of magnitude)
for our algorithms. The distributed procedure gets results only marginally
worse than the centralized one.

Notice also that in the real TQ deployment the central matching does
not just resolve a matrix (as it is done in these tests), but it also needs to
evaluate the requirement and rank expressions to build the matrix. This
has been earlier shown to lead to congestion of the TQ and motivated us to
develop the distributed algorithm in which those (possibly complex) logical
evaluations are delegated to the worker pilots (the master needs only deal
with the numerical matrix).

10.4. Evaluation 139

5x5 10x10 20x20 35x35 50x50 100x100
Size (NxM)

0

2000

4000

6000

8000

10000

Ra
nk

 S
co

re

lpAlgo
centralMatch
distribMatch

Figure 10.10: Rank score for different matrix sizes using random values.

5x5 10x10 20x20 35x35 50x50 100x100
Size (NxM)

10-1

100

101

102

103

104

M
ill

is
ec

on
ds

lpAlgo
centralMatch
distribMatch

Figure 10.11: Algorithm delay for different matrix sizes using random values.

140 Chapter 10. Distributed Data Caching and Job Matching

10.4.3.3. Results with Realistic Matrices

If we now repeat the tests with matrices containing more realistic values
(as discussed above), we obtain the results shown by Figure 10.12 (ranks)
and 10.13 (associated delays). In this case, we find a very similar distribution
of delays (no significant difference between the distributed and centralized
algorithms) but a higher difference in the rank results. With a less homoge-
neous input, choosing the maximum of one row (centralized) instead of the
maximum of the whole matrix (distributed) may have more harmful effects
if we lose a few high ranked pairs for the global sum. In a random matrix,
however, the maximum values of the columns are not so different, in average,
from the maximum values of the matrix.

5x5 10x10 20x20 35x35 50x50 100x100
Size (NxM)

0

1000

2000

3000

4000

5000

6000

Ra
nk

 S
co

re

lpAlgo
centralMatch
distribMatch

Figure 10.12: Rank score for different matrix sizes using realistic values.

In any case, what we can say is that the rank of the distributed algorithm
is very close to the optimum value (LP solver), so it seems good enough for
our purposes.

10.4.3.4. Real-Life Measurements

These tests were meant to compare rank values among the algorithms.
As indicated, the delay values are only illustrative because we have veri-
fied that the LP algorithm is unusable in practice and because the central
matching times cannot be reduced to this matrix resolution (it is better to
compare distributed and central matching delays by running real workflows
as done in previous sections). However, just to assess the applicability of the
distributed algorithm to a real use case, we have run the test with a matrix of

10.4. Evaluation 141

5x5 10x10 20x20 35x35 50x50 100x100
Size (NxM)

10-1

100

101

102

103

104
M

ill
is

ec
on

ds

lpAlgo
centralMatch
distribMatch

Figure 10.13: Algorithm delay for different matrix sizes using realistic values.

1,000x5,000 (i.e., 1,000 free pilots and 5,000 queued tasks) in a busy worker
(running 8 simultaneous simulation jobs) of our infrastructure (8 Intel Xeon
X5560 @ 2.80GHz and 24 GB of memory). The computation took around
9 seconds, which seems perfectly acceptable for such dimensions. We can
compare this with the results shown in Section 3.3.2, where the matching of
an equivalent matrix of 1,000x2,500 (half our problem) required 333 seconds
to be performed [65].

10.4.4. Pilots Autonomy from Task Queue

Since one of the objectives of the new architecture was to make the sys-
tem more robust against disruptions in the connectivity between the pilots
and the TQ component, we made an additional modification in the design.
Namely, pilots will now contact the master to report task completions and it
will be the master which tells the TQ, at some later moment, in bulk. The
advantage of this configuration is that, when a pilot finishes a task, it can
immediately get new work from the master, even if the TQ is not available
at the moment. The new architecture is reflected in the interaction diagram
on Figure 10.14 (compare to the previous one in Figure 10.1).

In order to check how the system behaves against downtimes of the TQ,
we have performed some tests in which the component is stopped for some
time while a workflow is being executed on a set of pilots. For these tests,
we have simulated downtimes of the TQ but not of the file servers from
where the tasks sandboxes are downloaded or where the tasks completion
reports are uploaded to. As discussed earlier, one can easily replicate these

142 Chapter 10. Distributed Data Caching and Job Matching

MASTER

TASK LIST

GET TASKS

LIST

TASK LIST

TASKS RANK

TASK RANKS

TASKS ASSIGN

TASKS ASSIGN

TASKS ASSIGN

DOWNLOAD TASKS

UPLOAD REPORTS

TASK END

WORKERWORKERTQFILE SERVER

SANDBOXES

TASKS INJECT

TASKS END

Figure 10.14: Enhanced distributed scheduling process.

file servers, since they entail no logic (this is only contained in the TQ) and
HTTP caches per site (or at the master) could also be used. At this point,
we have focused on decoupling the parts that require logical processing.

10.4.4.1. Tests Description

We have run a simple 2-step workflow of 320 tasks of 120 seconds each,
on a site with 100 available job slots, and we have manually interrupted
the communication with TQ in several different scenarios: the TQ is always
available, the communication is interrupted 3 times for 45 seconds each, one
single time for 4 minutes, twice for 4 minutes and, finally, a single cut of 10
minutes. We have run the workflow 3 times for each architecture (pre-DHT,
central matching, distributed matching and the new one, with task ends
reported by the master) and each scenario.

In order to better understand these processes, let us point at the detailed
occupancy plots. Firstly, the one for the distributed scheduling is shown by
Figure 10.15. In this plot, the communication cuts are shadowed in red. We
can see that when the TQ is not reachable, the tasks can continue running
(their completion is reported when the communication is recovered) but new
ones cannot be started.

Now, for the new architecture with bulk task completion reporting, the
situation is different. This is shown by Figure 10.16. This time, since the
master requests more tasks than pilots are available in the system, these

10.4. Evaluation 143

0 2 4 6 8 10 12 14 16
Time since workflow start (min)

0

20

40

60

80

100

120
Ru

nn
in

g
jo

bs

Figure 10.15: Slot occupancy on TQ disconnections with old architecture.

tasks can be started while waiting for the TQ to recover. In this case, one
can also clearly see that the workflow completion time occurs at a time
when it cannot be reported to the TQ and, thus, it will only learn that the
workflow is done when it has come back (at the end of the red region).

10.4.4.2. Results

A word of caution: the tested workflow and breakdown scenarios are
only some of an infinite number of possibilities. The results here presented
are only illustrative. If the communication with the TQ were lost a bit
earlier or later than occurred in our tests, the workflow completion times
for one or other architecture might vary. The selected tests however succeed
in showing a general trend in the behaviour of each architecture in case of
problems.

Figure 10.17 compares the workflow completion times for the different
architectures and scenarios. If no communication break takes place, the
classical setups behave better than the distributed one because, for these
very light loads, the overhead imposed by the bulk scheduling (at discrete
steps) and the loss of a computing node (the master) weigh more than the
gains they offer. Interestingly, the new system behaves like the previous
version of the distributed matching (so there is no penalty for the bulk
report).

When TQ disconnections occur, all setups suffer additional delays (but
never a total breakdown of the system). The distributed architecture be-
haves only slightly better than pre-DHT and central matching (it is more

144 Chapter 10. Distributed Data Caching and Job Matching

0 2 4 6 8 10 12 14
Time since workflow start (min)

0

20

40

60

80

100

120

Ru
nn

in
g

jo
bs

Figure 10.16: Slot occupancy on TQ disconnections with new architecture.

None 3x45sec 1x4min 2x4min 1x10min
TQ Disconnections

8

10

12

14

16

18

Tu
rn

ar
ou

nd
 ti

m
e

(m
in

)

pre-DTH
Central
Distrib
New
TQ-notice

Figure 10.17: Workflow turnaround time for different configurations and TQ
disconnection conditions.

10.5. Other Tests 145

resilient to short communication breaks but it cannot deal with longer cuts).
The only one performing significantly better than the others is the new ar-
chitecture, in which pilots can run tasks already known by the master with
no need to talk to the TQ. Eventually, the master will run out of tasks and
the sites will no longer be able to process further work (this is clearly seen
in the last scenario, 1x10min). However, the effect is delayed. Thus, the
system is more robust than the previous versions.

In the scenario 2x4min, we have depicted an additional plot point (la-
belled TQ-notice). This indicates the time when the TQ notices the workflow
completion. This comes from the fact that the TQ cannot know that the
workflow has ended until the site can communicate with it again. However,
the workflow was completely finished earlier (New) and the pilots might
have started new tasks if these had been already known by the master.

We would like to remark that, relative to the length of the tasks of this
workflows, these are really long breakdowns. In particular, 10 minutes is
more than the turnaround time of the whole workflow. If we scale task
duration by a factor 100 (3.3 hours instead of 120 seconds), a 45 seconds cut
would scale to 1.25 hours and the 10 minutes cut would represent one of 16.6
hours. It is therefore not surprising that the effective execution times are
greatly affected by the downtimes. We can actually regard as a great success
that the new architecture can potentially tolerate network disruptions of
hours with no noticeable effect. Finally, let us point out that depending
on the setup used with the pilots, such a long communication break could
also cause the pilots to conclude that the TQ has definitively been lost and
abort all operations. This would put an upper limit on the tolerable TQ
disconnections. For these tests, we have used very high time limits so that
pilots survive even the longer cuts because the results otherwise would have
been trivial: pilots abortion and undefined workflow completion times.

10.5. Other Tests

Apart from the tests evaluating the general performance of the new TQ
architecture and the accomplishment of the explicit targets of its design,
some other experiments have been performed with the infrastructure. They
are described in the following sections.

10.5.1. Task Length and Workflow Turnaround Time

In Chapter 5, we introduced a model for workflow execution in grid
resources. The model was further discussed in Section 8.2.1, where we de-
rived an expression to compute the optimal task length for workload divi-
sion, given the inter-tasks delay (time between consecutive tasks) caused by
match-making and task start-up.

146 Chapter 10. Distributed Data Caching and Job Matching

In order to informally assess the validity of our model, we have studied
one of the runs of the experiments discussed in Section 10.4 and see how its
results fit our equations. We have selected one of the runs of the serial chain
workflow, with 10,000 tasks and around 1,500 pilots, and the distributed
architecture (i.e., like the one evaluated at Figure 10.6). Since each of the
tasks has to perform useful work for approximately 211 seconds and, in this
case, the exact number of available slots was 1,565, we can compute the
constant introduced for Equation 5.14 as:

C = W

ϕK
= 10000 · 211

1565 = 1348.24 (10.1)

On the run, we have measured an average initial delay of 29.5 seconds and
an average inter-task delay of 25 seconds. This means that our theoretical
makespan, given by Equation 5.14 results in:

L = 29.5 + 211
2 + 1348.24 · (1 + 25

211) = 1643 (10.2)

In reality, the workflow took around 1,700 seconds. The discrepancy is
caused by the fact that the last steps are not filling the 1,565 slots completely
(because 20,000 is not divisible by 1,565) and so, in reality, avg(T ei) > T t

2 .
In any case, we are not very far from the theoretical result.

We can also calculate the optimum task size for this case using Equa-
tion 8.3 and find the corresponding total workflow duration in that case:

T t =
√

2 · 25 · 1348.24 = 259.6 (10.3)

L = 29.5 + 259.6
2 + 1348.24 · (1 + 25

259.6) = 1637.4 (10.4)

Hence, the real turnaround time is close to the optimum value. If, as an
example, we had chosen a task duration of 50 seconds, the workflow would
have lasted considerably longer:

L = 29.5 + 50
2 + 1348.24 · (1 + 25

50) = 2076.9 (10.5)

10.5.2. Data Access Patterns

Congestion problems on SE access are often caused by heterogeneous
data access patterns, especially the so-called hot spots, in which many tasks
consume the same (small) set of input files. A test case was designed to
study how our system behaves in such situations.

10.5. Other Tests 147

10.5.2.1. Tests Description

In this test, a 2-step workflow is run on 50 pilots. In the first step, 20
tasks produce 20 files (one each). On a second step, 140 tasks access 2
of those 20 files. This means that each file is accessed 14 times. We run
with three different architectures to see their different behaviours: pre-DHT,
centralized and distributed.

In the worst case scenario, each of the original 20 pilots would need to
serve the same files to 14 pilots. However, we will see that the TQ pilots
do better than that. Firstly, because some of the tasks run on pilots with
their required input files in their local cache. Secondly, because as soon as
a pilot has retrieved a file from a peer, it can serve it as well, so the number
of sources for the file increases (and requests are split among all the pilots
serving a file at a given moment).

10.5.2.2. Results

The plot at Figure 10.18 shows the distributions of reads (from SE,
from local cache and from other pilots using DHT) for each one of the
configurations and for the two workflow steps. What we see is that, in
the pre-DHT case, the SE is accessed for around 127 files (an average of 6
times for each of the files produced at the first step). With the sharing of
files among pilots (DHT), these accesses are avoided. So, first of all, the
possibility of creating hot spots on the SE itself is greatly reduced (which
was the main target of the whole system). The figure also confirms that the
local hit ratio is higher for the distributed cache than for the centralized
one.

To also understand what happens with the files served by DHT, we
must turn to the distribution of served files per pilot. This is shown by
Figure 10.19, for centralized matching, and Figure 10.20, for the distributed
case, which shows a very similar plot, with the difference that the number
of files that need to be transferred via DHT is lower.

We see that the number of pilots having served any of the files is higher
than the number of original holders (20); i.e., 34 in the case of distributed
architecture and up to 46 in the centralized case. Besides, the average
number of files transferred by a single pilot (line with triangles as markers)
is considerably lower than if only those 20 sources had been used (line with
circles as markers). As a reference, the average transfer value for the case
where all files were transferred using the DHT (what we earlier referred to
as worst case) is also plotted (line with diamonds as markers).

148 Chapter 10. Distributed Data Caching and Job Matching

Pre-DHT Central Distrib0

50

100

150

200

250

300

350

400

Re
ad

 fi
le

s
Cache
DHT
SE

Figure 10.18: Read distribution for different cache configurations.

0 10 20 30 40 50
Pilots

0

2

4

6

8

10

12

14

Se
rv

ed
 fi

le
s

Served files per pilot
Total files/org srcs
DHT files/org srcs
DHT files/total srcs

Figure 10.19: Distribution of files served per pilot with centralized matching.

10.5. Other Tests 149

0 5 10 15 20 25 30 35
Pilots

0

2

4

6

8

10

12

14
Se

rv
ed

 fi
le

s

Served files per pilot
Total files/org srcs
DHT files/org srcs
DHT files/total srcs

Figure 10.20: Distribution of files served per pilot with distributed matching.

10.5.3. Operation in a SE-less Resource Center

10.5.3.1. Sites without Storage Element

As discussed in Section 5.1, scientific grid workflows are subject to dif-
ferent data access paradigms. It cannot be ruled out that pilots are run
on computational resources with no local access to massive storage (e.g.,
WLCG’s Tier-3 centres or cloud machines). The tests discussed in this
section assess the behaviour of the TQ architecture in such circumstances.

Our tests simulate a workflow execution in a site without SE, where
data is accessed through the WAN on a remote SE. The data processing
tasks do not just copy the remote file, but open it and read it remotely.
Depending on the format of the file and the configuration, they may need
several round-trip-times to access different parts of the file. For this case,
we will not try to model the data access but just assign some inefficiency
to the processing time, so that the task is slower. For merge tasks, we will
just use a WAN transfer rate since they do not process the data, they just
get the files to merge them. CMS has verified that opening and reading a
file for merging (as opposite to copying it) is very inefficient due to the high
number of required round-trip accesses.

For the simulation to be realistic, we would like to replicate what CMS
jobs experience on their remote interactions. However, these numbers are
not easy to determine. They depend on many factors, which vary wildly.
Indeed, the performance depends on the network connections between local

150 Chapter 10. Distributed Data Caching and Job Matching

and remote sites, the congestion of WAN and LAN links at a given time
and the stress conditions of the remote SE. We do have some numbers from
some CMS internal reports. Sadly these are CMS private communications,
so they are only available for members of the collaboration. For example,
one document2 indicates that for some workflows, remote analysis incurs a
10% penalty. However, in another case3, for pile-up events, the efficiency
(relation between processing time and total job time) falls to around 30%
compared to the LAN case.

10.5.3.2. Tests Description

We have run a 2-step workflow on a site of reduced capacity (25 available
slots only). In the first one (processing), 120 tasks read 3 files each from
a remote SE. There are only 70 different files, so each file is read around
5 times, for a total of 360 read operations. Each processing task produces
1 small output file. In the second step (merge), 4 tasks consume all the
output files (30 files each) to create 4 big files and store them at the SE.
We have run this for an architecture with no cache at all, for the pre-DHT
configuration and for the distributed one.

In order to cover all the spectrum of possible performances, we will
simulate that the efficiency of tasks reading remote data is one of 30%, 60%
or 90% while tasks reading local data (on pilot’s local cache) have a 100%
efficiency. Meanwhile, for the complete file copies, we will set a transfer
rate of 5 MB/s (a typical CMS SE-to-SE rate, see Section 6.1). In our case,
copies are actually performed by the merge tasks, running on the WN, so
the average transfer rate should be significantly lower than between SEs
(specially because they need to copy many small files). This means that our
results (on how advantageous the pilots cache is) are actually conservative.

10.5.3.3. Results

Figure 10.21 shows the distribution of reads (from SE, from local cache
and from other pilots using DHT) for each one of the configurations and
for the two steps. When no cache is in place, all file reads imply accessing
the remote SE. When a cache is present (either with or without DHT),
more than half of the files are read from the local disk of the pilots, for the
processing step. If the DHT is present, then some additional files are read
from other pilots (only the initial pilots need to retrieve the files from the
remote SE, i.e., around 70 files). For the merging step, only a few files can
be read from the local cache because the merge task needs to retrieve all
the files produced at all the pilots. It is in this case where the DHT is more
useful, since it avoids interacting with the remote SE completely.

2https://indico.cern.ch/event/343183/contribution/0/material/slides/0.pdf
3https://indico.cern.ch/event/341563/contribution/4/material/slides/0.pdf

https://indico.cern.ch/event/343183/contribution/0/material/slides/0.pdf
https://indico.cern.ch/event/341563/contribution/4/material/slides/0.pdf

10.5. Other Tests 151

NoCache PreDHT
Processing step

Distrib NoCache PreDHT
Merge step

Distrib0

50

100

150

200

250

300

350

400
Re

ad
 fi

le
s

Cache
DHT
SE

Figure 10.21: Distribution of read operations for different cache configura-
tions.

Figure 10.22 shows the effect of the remote interactions in the total
workflow completion times, for each setup and tested efficiency values. For
comparison there is an additional result labelled with a 100% efficiency,
which corresponds to an ideal workflow run on a local SE, without congestion
and optimal network connectivity. The figure also displays the duration of
a merge task as a small light grey bar superposed to the bottom part of the
larger bars. Let us recall that the disparities are produced by the different
efficiencies in the processing tasks (which is reflected in the final turnaround
time) and also, though less noticeably, by the lower transfer rates when
downloading remote files (merge tasks). The latter is reflected by the shorter
merge tasks when DHT is used.

For a 90% efficiency, all the configurations behave in a very similar way
and are not too far from the value obtained for the ideal local workflow.
However, for lower efficiency values, the differences grow. This was expected
and depends on the type of workflow being run but also on the particular
characteristics of the sites involved in the operation. What we can say is
that the use of a cache, especially the distributed one, protects us against
low processing efficiencies, reducing their effect in the workflow completion
times. In addition, we must not forget that WAN access may cause addi-
tional problems in practice (broken connections, really slow network links).
This means that the improvement produced by the cache should be, in ge-
neral, higher than the one shown in the plots.

152 Chapter 10. Distributed Data Caching and Job Matching

30% 60% 90% 100%
Remote processing efficiency

0

10

20

30

40

50

Tu
rn

ar
ou

nd
 ti

m
e

(m
in

ut
es

)

NoCache
Pre-DHT
Distrib
Merge Job
Local Wkflow

Figure 10.22: Workflow turnaround time vs remote processing inefficiency
for different cache configurations.

Wrap-up: We have presented a new architecture that, by creating a DHT sys-
tem among pilot nodes, is able to offer an effective data cache and a distributed
scheduling mechanism, which is far more scalable than its centralized alterna-
tive. The new system is also more robust: there is less interaction between the
sites and the central queue, which has become simpler and less loaded.

We have shown that this model produces limited and predictable scheduling
overheads, even at large scales, and that this leads to shorter workflow execution
times. We have also verified that, by performing bulk task matching at regular
time intervals, the global assignment rank can be increased; in particular, the
hit ratio of our data cache rises, even for small workloads. Furthermore, DHT-
based file sharing services turn the local cache into a distributed one, with an
almost perfect hit score. In addition, several different tests have shown that
the new architecture is better prepared for difficult scenarios such as suffering
disruptions in the connectivity to the central TQ service or the absence of a
local storage system on the site where a workflow is being run.

Part IV

Conclusions

Chapter 11

Conclusions

11.1. Conclusions

This thesis has studied the scheduling and execution of large data-
intensive workloads on distributed computing resources. We have analyzed
the main issues involved in the management of large amounts of data and the
techniques required to efficiently access and process it. The central work of
this thesis is the design, implementation and evaluation of a scalable archi-
tecture for the completion of workflows with heavy data requirements, the
Task Queue. This new system introduces the concept of micro-scheduling,
according to which, individual nodes—rather than sites—are selected as
destinations for computational tasks. The architecture also improves data
access by using a distributed data cache and considering data location for
scheduling at both the grid and the cluster level. As a second major contri-
bution, we have performed an in-depth analysis of the broadcast operation in
the Kademlia DHT, since this functionality was required for our distributed
task matching algorithm.

Concerning scheduling, we have shown that the location of data is a
major factor to take into account, not only to optimise job efficiency, but also
to avoid excessive data replication and the problems that this entails (results
published in [112]). However, coordinating data placement and workload
management is a highly complex task and current approaches in WLCG
tend to separate both concerns even if the scheduler is able to suggest the
replication of certain data based on the requirements of already queued
tasks.

Our newly developed architecture builds on existing late-binding over-
lays, which have been highly successful in WLCG. Among other things, these
solve several issues shown by traditional scheduling: excessive dependency
on precise and up-to-date resource information and inability to enforce VO
priority policies. In order to understand early- and late-binding scheduling
better, we have enhanced an existing performance model for both approaches

155

156 Chapter 11. Conclusions

and we have reached an analytical expression that provides the time required
to complete a workload when discrete tasks are run. This expression allows
us to calculate the theoretically optimal task length value and lets us under-
stand the importance of reducing the scheduling overhead to avoid limiting
the scalability of the whole system (these results have been submitted to a
journal for publication and are pending acceptance).

A key piece of the Task Queue architecture is the Kademlia network
shared by the pilots at a grid site. We have used this DHT to build a dis-
tributed data cache among the pilots (they can share files without the need
of a central catalog) and to implement a cooperative task matching and as-
signment procedure. For this algorithm, we had to implement the broadcast
primitive on top of the DHT routing facilities. In fact, we have performed a
deep study of the problem of broadcasting in Kademlia. We have analytical-
ly and experimentally proven that full coverage with the minimum number
of messages is achievable with the only use of the DHT contact tables. We
have shown that this is possible with our bucket-based algorithm and exist-
ing partition-based protocols, though not for an arbitrary splitting degree.
In addition, we have provided a thorough study of the performance of each
protocol in the presence of churn or failure conditions and suggested differ-
ent techniques (notably, redundancy and/or resubmissions) to improve the
results in those cases (published in [101] and [113]).

Many different tests have been carried out to assess the performance of
the Task Queue. We have shown that the use of a data cache produces a
reduction in the number of accesses to the massive storage systems and that
this translates into shorter workflow makespans, especially when working
under very demanding conditions—e.g., with a very stressed or absent lo-
cal storage service (published in [114]). It has also been demonstrated that
the introduction of the DHT-based shared data cache is very useful to in-
crease the hit ratio for certain data dependency patterns. Finally, and most
importantly, the distributed task assignment algorithm produces improved
global assignment rank values while successfully increasing the scalability of
the system—due to limited and predictable scheduling overheads—as well
as the autonomy of the pilots from the Task Queue (results included in [115]
and in the article pending publication).

11.2. Outlook and Future Work

As we have seen throughout this work, efficiently scheduling and exe-
cuting large workloads with substantial data requirements is a challenging
task. However, the increasing abundance of data at our disposal suggests
that not only are data-intensive applications common today but they will
be even more frequent in the future. Therefore, the optimization of that kind
of workflows will become even more appreciated.

11.2. Outlook and Future Work 157

While we are confident that we have offered some contribution to the
field, this is an open problem and it will probably always be, given that the
related technologies are constantly evolving. Therefore, we plan to continue
working on this area and, in particular, on the topics dealt with by this
thesis.

For instance, we aim to study the possibility to integrate external data
location information into our task matching procedure. The most prominent
use case would be the sites whose SE is a distributed file system on top of
worker node disks (e.g., Hadoop). The SE files could be used for micro-
scheduling just like cached files currently are.

Another idea we would like to explore is the construction of a grid-wide
DHT network with a generalized data sharing protocol, where choosing one
origin or another was just a question of preference. I.e., select first a pilot at
the local node; otherwise, a pilot at the local site; if not possible, fall back
to the local SE; and, finally, resort to a pilot or SE in another site. This
would constitute a more elegant and homogeneous model than the one we
have today. In principle, though, the cooperative task scheduling procedure
would still lie confined to the boundaries of a site.

In more general terms, we aspire to deepen our understanding of how
micro-scheduling and inter-pilot communication can be applied to the im-
provement of the execution of massive workloads in large, complex, dis-
tributed computing infrastructures.

Part V

Appendices

Appendix A

Implementation and
Architecture Details

This appendix gives additional information on the details of the internal
architecture and implementation of some systems discussed throughout the
document.

Although the most relevant aspects of the Task Queue architecture were
discussed in Chapter 7 and 10, many details of its implementation, internal
architecture and the integration with existing job submission systems were
left out for the sake of concision. The first sections in this appendix complete
that information. Section A.1 gives details on the complete TQ architecture,
Section A.2 deals with the implementation of the TQ component and Sec-
tion A.3 discusses the algorithm and thresholds used by the Pilot Monitor
component to ask for submission of new pilot jobs to grid sites.

As described at length in Chapter 10, the pilot agents are key for the new-
ly proposed distributed architecture for data caching and micro-scheduling.
Section A.4 studies their internal architecture and implementation.

Finally, Section A.5 and A.6 provide additional information on the testbeds
used for the evaluation of the Kademlia broadcast algorithms and for the
execution of non-CMS workflows, respectively. The first one was discussed
in Section 9.5, while the latter was utilized for the tests shown in Chapters 7
and 10.

A.1. Complete Task Queue Architecture

The diagram in Figure A.1 shows the integration of the TQ system and
the CMS scheduling system. The components labelled as part of the classic
PA were those used by CMS to submit jobs directly to the grid resources
(including the Tier-0). In order to link these with the new components (Task
Queue, Pilot Monitor, Pilot Manager) the appropriate API (Application Pro-

161

162 Appendix A. Implementation and Architecture Details

gramming Interface) plugins are used.
In the figure, we can trace a CMS workflow from its injection into a PA

instance. The PA makes use of a specific submitter plugin to enqueue jobs
into the TQ in a controlled way. The PA also keeps track of the life cycle of
the tasks and retrieves resulting logs and reports using TQ-specific plugins.
From the point of view of the existing code, the TQ is seen as another grid
site. Once in the TQ, the tasks are retrieved and executed by pilot jobs
submitted by the Pilot Manager and monitored by the Pilot Monitor.

We are not really interested in the details of the ProdAgent (more so,
since this system was phased out in favour of the new WMAgent—and its
WMCore framework—and glideinWMS), but we want to stress that the in-
troduction of the TQ did not require major modifications in this component.
The TQ is just another resource to which jobs are submitted. It is interest-
ing to note, however, that existing data dependencies between CMS jobs are
translated into task requirements by the TQ plugin upon submission. Once
in the TQ, the tasks and their requirements are managed independently of
the client that submitted them.

It is clear, however, that in order to fully take advantage of the possibil-
ities offered by micro-scheduling, the PA (or the relevant workflow manager
or submission agent) must be made aware of the details of the TQ opera-
tion and must be coded explicitly to use the TQ interface appropriately. Let
us not forget that, while the TQ enables us with powerful means to match
and rank tasks and pilots, the TQ itself is completely ignorant about the
semantics of the task requirements. It is the duty of the submission agent
(who knows the work to be done) to set those properly.

The Pilot Manager submits pilots to the grid when this is requested
by the Pilot Monitor. The latter queries the TQ about queued tasks and
releases new pilots as a result. To do this, it will take into account how
many pilots have already been sent to each site (active or still idle) and
what are the thresholds for those sites. It uses information from the TQ and
from the standard PA’s JobTracking component, which tracks the pilots.
A running pilot registers itself with the TQ, asks for a task, downloads its
description and input sandbox, and runs it. When this is finished, it informs
about its exit status and uploads the task output and task report. It also
sends a heartbeat message every once in a while, reports unexpected errors
and informs about its own termination.

The TQ is able to keep track of tasks and pilots, provides appropriate
tasks for a pilot that requests so (matching the task requirements) and sets
the correct status when the task is complete. It also logs important events
in each pilot’s lifetime and archive pilots that announce their termination
or that have not sent a heartbeat for too long. The TQ also offers an API
for tasks and pilots status retrieval.

A.1. Complete Task Queue Architecture 163

Fi
g.

A
.1
:I
nt
eg
ra
tio

n
of

th
e
Ta

sk
Q
ue

ue
w
ith

th
e
ex
ist

in
g
C
M
S
su
bm

iss
io
n
sy
st
em

.

164 Appendix A. Implementation and Architecture Details

A.2. Task Queue Internals

Figure A.2 shows the main components of the more recent version of
the TQ and its interactions with external agents, such as any WMCore
component, the pilot jobs (via a REST interface) and any client using the
public API, for purposes such as task enqueuing, monitoring or debugging.
The TQ is started as a daemon using the WMCore command line client.

Fig. A.2: Diagram of classes and threads of the Task Queue.

Probably, the most striking feature of the diagram is the central role that
the DB (Database) has in the architecture. In fact, all state information of
the TQ service is persisted on the DB. This has several advantages. Firstly,
this makes it easy for the several threads in the system to exchange infor-
mation (thus, cooperate) in a safe way. An adequate use of transactions and
locks avoids any race conditions. Secondly, if for some reason (e.g., mainte-
nance) the service must be interrupted, the operations can continue almost
seamlessly upon restart, because all state information can be recovered from
the DB. Moreover, high availability and load balancing could be achieved by
sharing the DB among several TQ servers. Finally, providing an API for ex-
ternal queries (e.g., for monitoring) or archiving historical information can
be conveniently accomplished by coding the appropriate SQL (Structured
Query Language) queries.

There are several parallel lines of execution within the TQ. Firstly, the

A.3. Pilot Release Algorithm and Thresholds 165

main thread is started when the TQ boots up and it is in charge of parsing
the configuration information, setting up the necessary data structures for
the other components (e.g., the map between message types and associated
handlers) and starting the other threads. The worker threads take care of
routine tasks, such as periodically verifying the heartbeat messages of the
pilots in the system and removing them if they are too old. The message
threads run the handlers associated to the WMCore messages1. A server
running the CherryPy web framework [116] is responsible for the REST
communication with the pilots. This server is composed of several threads
that listen on the defined port and serve requests by running the handler
that is appropriate for the received message type. This will act on the DB
and send a reply to the remote pilot, as appropriate.

Finally, apart from the different thread pools running on the TQ, several
API objects may be used by external clients to run a series of predefined
queries on the TQ DB. Read-only and read-write interface objects have
been defined separately so that, depending on the settings, clients may be
authorized to just perform monitoring operations or, otherwise, modify the
DB upon task insertion, removal or archival.

A.3. Pilot Release Algorithm and Thresholds

A.3.1. Pilot Release Algorithm

How many pilots are sent to each grid site at a given time depends on a
number of factors. The Pilot Monitor component periodically considers all
the available information and calculates the number of pilots that should
be released at that moment. The Pilot Monitor owns the information about
how many pilot jobs have been submitted to each site and how many of
those have finished already. The rest are either running or queuing at the
site. To complete this information, the Pilot Monitor queries the TQ about
the tasks in the queue and the registered pilots.

In order to perform its duty, the Pilot Monitor needs to be aware of the
destination of the queued tasks. Since this is an essential information, the
TQ manages it as a special requirement (stored in a dedicated DB field) and
exposes it through an API, used by the Pilot Monitor. This API provides
the information of the number of tasks requiring each site and those that can
run on any site. For example, the API could offer the following information:

[
{"sites": ["site1", "site2"], "tasks": 100 },
{"sites": ["site1"], "tasks": 50 },
{"sites": null, "tasks": 250 }

]

1At the moment, this capability is not really used, but the machinery is ready.

166 Appendix A. Implementation and Architecture Details

The result (in JSON format) indicates that 100 tasks can run at site1
or site2, 50 tasks require site1 and 250 tasks can go to any site. With this
information, the Pilot Monitor is ready to run his algorithm, once for each
known site. The following listing summarizes its main steps in pseudo-code:

1. Recall thresholds and previously submitted pilots for site
2. Set: available_slots := max_pilots - submitted_pilots

3. If available_slots <= 0:
4. Then: Do not continue (do not submit more pilots)

5. Query TQ about tasks that can run on this site
6. For each group of enqueued tasks:

7. If enqueued_tasks < inactive_pilots:
8. Then: Mark inactive pilots as active, mark tasks as covered
9. Else:
10. If available_slots > number_of_tasks:
11. Then: send more pilots, mark tasks as covered

12. If idle_pilots < min_idle_pilots:
13. Then: send more pilots

14. If submitted_pilots < min_submitted_pilots:
15. Then: send more pilots

The algorithm shows a few per-site thresholds that are taken into ac-
count when calculating the number of pilots to submit. We discuss the pilot
management thresholds in the next section.

A.3.2. Site Thresholds

Mimicking the way that PA throttled the submission of jobs to the sites
(to avoid overloading them), the Pilot Monitor uses some per-site thresholds
when requesting the submission of new pilots. At the moment, these are
defined manually, but more dynamic ways of handling this are possible,
based on the grid information system or on proper analysis of the number
of idle or queued pilots at each site.

The initially defined thresholds were the following:

minimum/maximum_submission: Minimum/maximum number of pi-
lots to be submitted at once to the site.

max_pilots: Maximum number of pilots simultaneously running or
queuing at the site.

min_submitted_pilots: If there are fewer submitted pilots, submit
some more (up to the number of available resources for the site).

A.4. Pilots Internals 167

min_idle_pilots: If there are fewer idle pilots, submit some more (up
to the number of available resources for the site).

It may be worth indicating that the min_submitted/idle_pilots thresh-
olds are used to submit pilots to sites even when no task is waiting to run
there at a given moment. A legitimate reason for this is to have those pilots
ready for new tasks arriving to the site, so that there is no initial delay in
running them.

A.4. Pilots Internals

Figure A.3 shows a simplified diagram of the internal architecture of
a pilot job. Everything is set off by an invoking agent, which is normal-
ly a script arrived as a grid job to a site’s worker node. The pilot main
thread initializes a file server (to share cache files with other peers) and the
DHT subsystem, which fulfills the duties imposed by the membership to the
Kademlia network.

The basic model of operation is based on alarms, timers and messages.
When the pilot’s main thread completes an action, it sets a timer for its
next expected activity and goes to sleep until it is awaken by an alarm. An
alarm may be caused by a timer previously set by the thread itself or may
be the result of a DHT message having arrived from the DHT subsystem.
In the latter case, the handler associated to the type of the received message
is loaded and executed.

In stable conditions, the main pilot thread is looping in either the master
or the worker main routines. In the first case, a new thread is launched
every time a task is run and the main thread basically waits for it to finish
(though it still reacts to alarms). In the second one, the main thread interacts
with the TQ and the other pilots (making use of the DHT capabilities) and
orchestrates the distributed task matching procedure.

The cache manager component takes care of the files in the peer’s cache.
For simplicity, not all possible access relations have been drawn in the di-
agram, but it is clear that both the file request handlers and the running
tasks may access the files on the cache. Also, the main thread is able to
contact other peers to fetch required input files and, subsequently, ask the
cache manager to include them in the local cache.

As for the DHT subsystem, the core functionality is operated by the
handlers invoked by the Listener, which runs an asyncore loop. Asyncore is
a python module for asynchronous socket handling and it is used here to
deal with simultaneous communications with multiple DHT peers and also
with the local client (in this case, the pilot’s main thread) [117]. When a new
message is received, the appropriate handler (external for DHT messages,
internal for local commands) is run. These handlers are able to set timers on

168 Appendix A. Implementation and Architecture Details

Fig.A
.3:Internalarchitecture

ofthe
pilot

agents.

A.5. DHT Testbed Internals 169

the pilot’s alarm table in order to communicate with it or to open sockets
to remote peers when outgoing messages need to be sent.

The interface of the DHT peer exposes high-level methods, such as join
network, locate close peers, store value, retrieve value or send broadcast
message. These methods may be translated in several low-level operations
(such as contacting more than one external peers). Every command received
through the interface is put on a thread-safe duplex queue of tasks. We call
this queue duplex because it supports the returning of results for completed
operations: the client requests an operation and, if desired, may call a block-
ing operation to wait for a returned value. In this way, the peer interface
may be used by several independent threads, which is actually the case here
since both the pilot’s main thread and the DHT’s Peer Timer use it.

The other DHT-related threads are basically timers. The Peer Timer
is in charge of Kademlia’s periodic tasks, such as refreshing the routing
buckets or republishing stored key-value pairs. The ACK Timer, in turn,
keeps a table of the DHT messages that were sent and for which an ACK
(Acknowledgment) message is due. If a timeout occurs for a message, this
timer asks for its resubmission. The Peer Runner thread just executes the
commands requested in the previously described duplex queue. It uses an
internal Unix socket to send the necessary requests to the Listener thread.

Finally, the Aggregator keeps track of aggregated replies for broadcasts.
This component maintains a table of messages for which reply values should
be aggregated (e.g., a list of tasks per pilot for all the nodes in the network).
Each entry in the table includes information such as the function to be used
for the aggregation, the address of the peer node that sent the message to
us, the number of replies that we should receive before sending the result
back and a timeout value after which we should reply even if not all replies
were received (this depends on the node’s position in the broadcast tree).
When a DHT message is received, the associated handler to be executed
gets a reference to the Aggregator object so it can add or remove entries
in the table or update existing ones. When due, the Aggregator thread will
directly send aggregated results to the appropriate DHT peer.

A.5. DHT Testbed Internals

Figure A.4 shows a diagram of the deployment and duties of the different
elements involved in the DHT broadcasting tests. The tests were run on a
parallel facility at the CIEMAT institute, called Euler. Euler currently runs
a batch system so that independent batch jobs can be run on the offered
slots. For our tests, we launch 50 independent jobs on 50 slots. Each one of
these spawns 20 independent DHT peer threads, which join the Kademlia
network initiated by previously started peers. The result is a Kademlia DHT
with 1000 members.

170 Appendix A. Implementation and Architecture Details

Fig.A
.4:A

rchitecture
ofthe

testbed
used

in
the

evaluation
ofthe

D
H
T

broadcast
algorithm

s.

A.6. Non-CMS Testbed Internals 171

In the figure, we can also appreciate some processes running on two hosts
external to the Euler nodes. The first one of these is a user interface set up
for job submission to Euler. A single process runs here, with the duty of,
firstly, launching the jobs (with a qsub), watching their produced log files,
detecting when a given test run has completed and, before a new run is
started, packing all the resulting logs for off-line parsing and analysis. This
is possible because Euler provides shared storage between the workers and
the UI (User Interface), so that the jobs can write their logs there and the
process at the UI consume them.

There is another external entity running a server whose purpose is to
feed the DHT simulators with consistent configuration information and the
commands to be run. For each set of tests, a configuration file with the
necessary settings is prepared for the server. The settings include the initial
number of DHT peers to be run, the rates of peer joining and leaving the
network, the frequency of broadcasts and the total length of the test. The
server parses this configuration file and translates it into commands that the
remote simulators can run (e.g., add another peer or tell peer X to initiate
a broadcast).

Like in the case of the UI, the external server also verifies the completion
of test runs in order to proceed with the subsequent ones when due. In this
way, long series of DHT broadcast tests can be run unattendedly.

A.6. Non-CMS Testbed Internals

Figure A.5 shows a diagram of the components of the testbed used to
run non-CMS workflows with the TQ. The elements in blue are the ones
composing the TQ architecture and are independent of the type of workflow
being run. The pink components are those developed to manage and execute
non-CMS workflows.

The initial script runMany.sh parses a single configuration file indicating
a series of tests and their characteristics (number of steps, tasks, dependen-
cies, etc.). For each test run, it invokes the workflow manager, which runs a
complete workflow and, then, another script processRun.sh, which parses
the produced log files. When this is done, it goes on to the next run and the
process is repeated.

The workflow manager creates the tasks of the first step, based on the
parameters given by the initial script and submits them to the TQ. From
this moment, it polls the TQ to keep track of the evolution of all the tasks.
As these finish, the workflow manager creates new tasks, depending on them.
Since the non-CMS tasks are instrumented to provide any monitoring in-
formation that is interesting for our analysis, the processRun.sh script can
easily parse them and produce the desired statistics and plots. This is done
on the fly for each workflow run.

172 Appendix A. Implementation and Architecture Details

Fig. A.5: Components of the non-CMS Task Queue testbed at CIEMAT.

Regarding the management of pilot jobs, two different submission meth-
ods were used. While for tests in Chapter 7 we had the Pilot Monitor decide
how many pilots to send based on queued tasks, for the tests in Chapter 10
a different approach was followed. Since we were focused on the performance
of the TQ component and the interactions among the pilots, we had no par-
ticular interest in verifying the Pilot Monitor further. Moreover, we required
additional resources, therefore we looked at methods to incorporate the slots
in the CIEMAT’s Euler facility (with no grid interfaces) to our tests. We
decided to develop some simple scripts that were able to schedule and start
the desired number of pilots, either on Euler slots or on the grid site worker
nodes and operate them manually. The pilots were started prior to the tasks
being queued and were able to run several different workflows sequentially.
This kept scale testing manageable.

Resumen de la tesis

Esta tesis estudia la planificación y ejecución de trabajos computacionales
intensivos en datos a gran escala. En ella se analizan los principales proble-
mas relativos a la gestión de grandes volúmenes de información, así como las
técnicas necesarias para procesarlos. Su principal contribución es el diseño,
implementación y evaluación de una arquitectura escalable para completar
flujos de trabajo con grandes requisitos de datos. Este nuevo sistema, al
que hemos llamado Task Queue (TQ), introduce el concepto de micropla-
nificación, según la cual, se seleccionan nodos individuales como destino de
las tareas computacionales, en lugar de centros de recursos (sites), como
se hace tradicionalmente en las infraestructuras grid. Nuestra arquitectura
también mejora la eficiencia de acceso a datos, al construir una cache dis-
tribuida y utilizar la ubicación de los ficheros, tanto en el ámbito del grid
como dentro de cada cluster, como parte del proceso de planificación. Una
segunda aportación a destacar en el trabajo es el análisis en profundidad de
la operación de broadcast en Kademlia, un importante sistema de tabla hash
distribuida (Distributed Hash Table, DHT), motivado por la necesidad de
utilizar esta funcionalidad en nuestro algoritmo cooperativo de asignación
de tareas.

Vivimos en la era de los datos. Tanto en el ámbito empresarial como
en el social y el científico se generan ingentes cantidades de información,
cuya gestión requiere enormes capacidades de procesado, transferencia y
almacenamiento. En el ejemplo paradigmático de la computación científi-
ca, un amplio rango de infraestructuras distribuidas son utilizadas hoy en
día para hacer frente a las necesidades de los experimentos. Entre ellos, las
infraestructuras grid constituyen probablemente el ejemplo más representa-
tivo de un entorno complejo de computación distribuida. El grid aglutina
numerosos centros de recursos en múltiples dominios administrativos, en-
lazados por complejas redes de comunicación, que no siempre pueden garan-
tizar bajas latencias. Las aplicaciones en el grid se enfrentan a interfaces
y entornos heterogéneos, incertidumbre sobre los recursos disponibles y la
inevitabilidad de una cierta tasa de error por configuraciones deficientes,

173

174 Resumen de la tesis

problemas de hardware y actividades de mantenimiento.
Nuestro trabajo arranca en el entorno del Worldwide LHC Computing

Grid (WLCG), actualmente el mayor grid computacional en el planeta, y en
concreto en el experimento Compact Muon Solenoid (CMS), como respues-
ta a ciertos problemas de congestión en el acceso a los sistemas de almace-
namiento que ralentizaban la realización de sus trabajos computacionales. A
partir de ahí, afrontamos el problema general de la planificación y ejecución
de cargas de trabajo intensivas en datos. Consideramos que los problemas y
soluciones encontrados pueden ser interesantes no solo para el entorno ac-
tual de CMS o incluso para el contexto de los grids de uso científico, sino
para ámbitos más generales.

En lo referente a la planificación de tareas, nuestro trabajo muestra que
la ubicación de los ficheros a procesar debe ser un factor fundamental a tener
en cuenta, no solo para optimizar la eficiencia del acceso a los datos, sino
también para evitar una excesiva replicación de los mismos y los problemas
que esto conlleva: uso innecesario de los recursos de red y del espacio de
disco, aumento de la presión sobre los sistemas de almacenamiento (Storage
Element, SEs). Esto fue confirmado en un trabajo temprano consistente en el
desarrollo y prueba de una versión mejorada del metaplanificador GridWay,
que incorporaba información sobre los datos requeridos por las tareas en el
proceso de su planificación.

Sin embargo, es interesante resaltar que la coordinación del emplaza-
miento de datos y la gestión de las tareas a ejecutar no es una actividad
sencilla. Las predicciones sobre la duración de las tareas individuales son
habitualmente poco fiables o inexistentes y las políticas de emplazamiento
de ficheros pueden llegar a ser muy complejas. Las aproximaciones actuales
en WLCG tienden a separar ambas responsabilidades: los ficheros en general
se replican en función de su popularidad pasada (sin evaluar las necesidades
presentes), aunque en ciertos casos sí se permite que el planificador realice
sugerencias de replicación de datos en base a los requisitos presentados por
las tareas encoladas para ejecución.

La arquitectura de la TQ extiende los modelos de asignación tardía, basa-
dos en agentes llamados pilots, cuya misión es recuperar carga de trabajo
real de una cola de tareas ubicada en un servicio central de una organi-
zación virtual (Virtual Organization, VO). Los sistemas de pilots han tenido
un gran éxito en WLCG por varias razones. En primer lugar, eliminan la
incertidumbre sobre el estado de los recursos disponibles que presentaba el
envío tradicional (directo) de trabajos, puesto que solo solicitan una tarea
cuando ya están en ejecución. En segundo término, la cola central de ta-

Resumen de la tesis 175

reas dota de flexibilidad a las VOs para actualizar sus políticas de prioridad
internas de manera sencilla. Además, los pilots permiten asegurar que el en-
torno de un nodo es el adecuado para las necesidades de ejecución antes de
comenzar esta y ofrecen un interfaz homogéneo a las tareas de la VO.

Para comparar mejor los modelos de asignación temprana y tardía,
hemos perfeccionado un modelo existente sobre el rendimiento de ambos,
alcanzando una expresión analítica que indica el tiempo requerido para eje-
cutar un conjunto de tareas de duración discreta, en función del tiempo de
planificación. Esta expresión nos permite calcular el valor teórico óptimo
de la duración de las tareas y nos muestra la importancia de reducir el so-
brecoste temporal que el proceso de asignación conlleva, si queremos evitar
limitar la escalabilidad de todo el sistema.

El objetivo inicial de la nueva arquitectura era aprovechar los sistemas
de pilots para crear una cache que ayudara a mejorar la eficiencia del proce-
samiento de datos y redujera la presión que el acceso simultáneo de un gran
número de tareas causa en los sistemas de almacenamiento. Para conseguir
que la cache sea efectiva, es necesario que las tareas a realizar se asignen
a los nodos de ejecución apropiados: aquellos que albergan los ficheros de
entrada requeridos. La microplanificación resulta pues necesaria para esta
meta. Pero el potencial de esta técnica de asignación a nodos individuales va
más allá de este uso particular. Gracias a ella podrían seleccionarse pilots en
función de la memoria, el disco, el número de procesadores o instrumentación
asociada. Igualmente, se podría, por ejemplo, equilibrar el número de tareas
limitadas por entrada/salida y por procesamiento en un mismo nodo.

El problema con esta idea es que las colas centrales de tareas pueden
convertirse en cuellos de botella para el sistema y limitar su escalabilidad.
La cantidad de peticiones que el servidor TQ debe responder aumenta con el
número de pilots en ejecución. Además, un mayor número de tareas en cola y
una mayor complejidad de los criterios de selección suponen más candidatos
que inspeccionar para cada petición y más tiempo invertido en la evaluación
de cada uno, respectivamente. Los sistemas de pilots existentes atajan el
problema agrupando bien tareas con requisitos comunes bien pilots (por
ejemplo, en sites) o usando una asignación previa de tareas a pilots, antes de
que lleguen a ejecutarse. En estos casos se está efectivamente restringiendo
(o abandonando) la microplanificación o la asignación tardía.

La versión final de la arquitectura TQ utiliza una red Kademlia forma-
da por los pilots de un site grid para crear una cache distribuida de datos
(gracias a la cual los pilots pueden descubrir y compartir ficheros) y para
implementar un procedimiento cooperativo de asignación de tareas. De este
modo, el servidor TQ central no necesita mantener un catálogo con la ubi-
cación de todos los ficheros en la cache y tampoco debe encargarse de las

176 Resumen de la tesis

costosas evaluaciones de las tareas para emparejarlas con los pilots. En lugar
de ello, un pilot maestro solicita de la cola central todas las tareas a ejecutar
en su site y después difunde la lista de tareas entre todos los pilots para que
cada uno asigne un rango de preferencia a cada una de ellas. A continuación
estas puntuaciones son devueltas al nodo maestro que las compara y realiza
el emparejamiento definitivo.

El algoritmo de asignación de tareas descrito requiere el envío de la lista
de tareas a evaluar a todos los pilots en la red Kademlia. Es decir, necesi-
ta del envío de mensajes de broadcast. Sin embargo, esta funcionalidad no
está presente en el protocolo de Kademlia original así que ha sido nece-
sario añadirla, aprovechando las capacidades de enrutamiento del DHT. De
hecho, esta extensión de su protocolo nos ha llevado a un estudio en pro-
fundidad del problema de broadcast en Kademlia. Nuestro trabajo muestra
tanto analítica como experimentalmente que se puede conseguir una cober-
tura perfecta con un número mínimo de mensajes usando simplemente las
tablas de contactos que el DHT ofrece. Esto se puede hacer con nuestra pro-
puesta de que un nodo reenvíe los mensajes recibidos a un contacto de cada
bucket de Kademlia, o bien usando alguno de los algoritmos existentes de
división del espacio de identificadores para el reenvío. Este último caso, sin
embargo, solo es válido, como demostramos, si se usa un valor de división
compatible con los mencionados buckets.

Nuestro estudio sobre el broadcast en Kademlia se completa con un análi-
sis de los problemas derivados de posibles errores de transmisión y de una
alta rotación de nodos de la red. Ofrecemos una fórmula para la cobertura
del envío en función de la probabilidad de error en cada mensaje y señalamos
que los árboles de difusión con menos nodos en las primeras etapas obtienen
mejores resultados. Además, proponemos y evaluamos varias técnicas de
mejora cuando se dan pérdidas de mensajes. Los principales ejemplos son el
uso de mensajes ACK directos y retransmisiones, y el envío simultáneo de
varios mensajes redundantes (aprovechando las características particulares
de Kademlia). Finalmente, mostramos que es necesario escoger la política
de reenvío adecuada para mensajes duplicados, puesto que, de lo contrario,
las técnicas de mejora pueden tornarse ineficaces o incluso perjudiciales.

Se han realizado numerosas pruebas para evaluar la funcionalidad y el
rendimiento de la Task Queue. Se ha mostrado que el uso de una cache de
datos produce una reducción en el número de accesos a los SEs de los sites
y que esto supone un menor tiempo de ejecución global, especialmente si se
trabaja en condiciones exigentes (con un SE muy cargado o en centros que no
disponen de servicio de almacenamiento local). También se ha demostrado

Resumen de la tesis 177

que la introducción del sistema distribuido mejora significativamente el ratio
de aciertos en la cache para ciertos patrones de dependencias entre tareas
(por ejemplo, cuando una tarea necesita leer datos producidos por varias
antecesoras, ejecutadas en nodos diferentes).

Como resultado fundamental, hemos comprobado que el procedimiento
de asignación de tareas distribuido consigue aumentar la escalabilidad del
sistema. Esto se debe a la enorme reducción en el número de interacciones
con el servidor TQ y al hecho de que las tareas más complejas quedan a
cargo de cada comunidad de pilots. De esta manera, nuestra arquitectura
puede crecer hasta un elevado números de pilots y tareas sin renunciar a la
microplanificación ni a la asignación tardía. Además, el nuevo sistema de
asignación periódica, en grupo, consigue un rango global más alto, puesto
que puede optimizar las asignaciones a varios pilots a la vez, en lugar de
considerarlas secuencialmente. Por último, el nuevo sistema mejora la au-
tonomía de los pilots y reduce la dependencias con el servidor TQ. Todo
esto se ha podido comprobar con diversos experimentos en los que se medía
la respuesta del sistema a gran escala, se cuantificaba el rango global de las
asignaciones y se comprobaba el efecto que un corte en la conectividad entre
los pilots y la cola central tenía sobre el rendimiento global.

A lo largo de toda la tesis, comprobamos que la planificación y ejecución
eficiente de grandes cargas de trabajo con enormes requisitos de datos supone
un desafío. Sin embargo, la creciente abundancia de información a nuestra
disposición sugiere que las aplicaciones intensivas en datos, ya frecuentes
hoy en día, lo serán más todavía en el futuro, por lo que su optimización
será cada vez más necesaria. Estamos convencidos de haber realizado algu-
nas aportaciones al estudio de este problema. Sin embargo, este continúa
siendo un campo abierto de trabajo y probablemente lo seguirá siendo in-
definidamente, puesto que las diversas tecnologías implicadas evolucionan
constantemente. Por este motivo, planeamos seguir trabajando en esta área
y, en particular, en algunos de los aspectos tratados en esta tesis.

Nos gustaría estudiar la posibilidad de integrar información externa so-
bre ubicación de ficheros en nuestro procedimiento de asignación de tareas.
La principal aplicación de esta funcionalidad se daría en aquellos sites que
utilizan un sistema de ficheros distribuido sobre nodos de ejecución como
SE (por ejemplo Hadoop). De esta manera, sus ficheros estarían disponibles
para nuestra microplanificación de la misma forma que los ficheros de la
cache.

Otra idea que desearíamos explorar es la construcción de una red DHT
extendida al conjunto de una infraestructura grid, de manera que la com-
partición de ficheros estuviera generalizada y la elección de una fuente u
otra fuera una simple cuestión de preferencia. Así, los datos requeridos se

178 Resumen de la tesis

buscarían primero en los pilots del nodo local. De no encontrarse allí, se con-
tactaría a los otros pilots del mismo site. Si esta tentativa tampoco tuviera
éxito, se recurriría al SE local. Finalmente, si fuera necesario, se buscaría
el fichero en pilots o SEs remotos. A nuestro entender, este es un modelo
más elegante y homogéneo que el actual. Cabe indicar, sin embargo, que
el procedimiento de asignación cooperativa de tareas seguiría, en principio,
confinado a los límites de un site (y su red local).

Finalmente, y en términos más generales, aspiramos a profundizar en
el conocimiento de cómo la microplanificación y la comunicación entre pi-
lots puede contribuir a mejorar la ejecución de trabajos masivos en grandes
infraestructuras de computación distribuidas.

List of Acronyms

ACK Acknowledgment

ALICE A Large Ion Collider Experiment

AliEn ALICE Environment

AM Application Master

API Application Programming Interface

ATLAS A Toroidal LHC Apparatus

BB Bucket-based

CDN Content Delivery Network

CE Computing Element

CERN European Laboratory of Particle Physics

CIEMAT Centro de Investigaciones Energéticas Medioambientales y
Tecnológicas

CMS Compact Muon Solenoid

CPU Central Processing Unit

CRAB CMS Remote Analysis Builder

DB Database

DBS Dataset Bookkeeping Service

DHT Distributed Hash Table

DIANA Data Intensive And Network Aware

DIRAC Distributed Infrastructure with Remote Agent Control

DLI Data Location Interface

179

180 List of Acronyms

DLS Data Location Service

DNS Domain Name System

DPS Data Placement System

EGI European Grid Infrastructure

EMI European Middleware Initiative

ERR Empty Regions Re-assignment

F1 Forward one

FA Forward all

FIFO First in, First out

GPU Graphics Processing Unit

HDFS Hadoop File System

HPC High Performance Computing

HTC High Throughput Computing

I/O Input/Output

ID Identifier

JSON JavaScript Object Notation

LAN Local Area Network

LFC LCG File Catalog

LFN Logical File Name

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

LP Linear Programming

LRU Least Recently Used

NP Nondeterministic Polynomial time

OGSA Open Grid Services Architecture

OSG Open Science Grid

P2P Peer-to-Peer

List of Acronyms 181

PA ProdAgent

PanDA Production and Distributed Analysis

PB Partition-based

R1 Replicate one

R1-F1 Replicate one/Forward one

R1-FA Replicate one/Forward all

RA Replicate all

RA-F1 Replicate all/Forward one

RA-FA Replicate all/Forward all

REST REpresentational State Transfer

SE Storage Element

SPOF Single Point of Failure

SQL Structured Query Language

SRM Storage Resource Manager

TCP Transmission Control Protocol

TFC Trivial File Catalog

TQ Task Queue

TTL Time-to-live

UI User Interface

URL Uniform Resource Locator

VM Virtual Machine

VO Virtual Organization

WAN Wide Area Network

WLCG Woldwide LHC Computing Grid

WMS Workload Management System

WN Worker Node

XOR Exclusive Or

YARN Yet Another Resource Negotiator

Bibliography

[1] G. Juve and E. Deelman. Scientific Workflows and Clouds. Cross-
roads, vol. 16(3), pp. 14–18, ACM, 2010.

[2] R. Bryant, R. H. Katz and E. D. Lazowska. Big-Data Comput-
ing: Creating Revolutionary Breakthroughs in Commerce, Science and
Society, 2008.

[3] I. J. Taylor, E. Deelman et al. Workflows for e-Science. Springer-
Verlag London Limited, 2007.

[4] I. Foster and C. Kesselman, eds. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[5] MIT. 10 Emerging Technologies That Will Change the World,
February 2003. Available at http://www2.technologyreview.com/
Infotech/13060/ (accessed: January 14th, 2015).

[6] R. Buyya, C. S. Yeo et al. Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation computer systems, vol. 25(6), pp. 599–
616, Elsevier, 2009.

[7] D. Parkhill. The Challenge of the Computer Utility. Addison-
Wesley Educational Publishers Inc., 1966.

[8] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. Intl. Journal of High
Performance Computing Applications, vol. 15(3), pp. 200–222, Sage
Publications, 2001.

[9] I. Foster, C. Kesselman and S. Tuecke. What is the Grid? A
Three Point Checklist, July 2002.

[10] E. Huedo, R. S. Montero and I. M. Llorente. A Framework for
Adaptive Execution in Grids. Software: Practice and Experience, vol.
34, pp. 631–651, Wiley Online Library, 2004.

183

http://www2.technologyreview.com/Infotech/13060/
http://www2.technologyreview.com/Infotech/13060/

184 Bibliography

[11] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastruc-
ture Toolkit. Intl. Journal of High Performance Computing Applica-
tions, vol. 11(2), pp. 115–128, SAGE Publications, 1997.

[12] I. Foster, C. Kesselman et al. The Physiology of the Grid. Grid
computing: making the global infrastructure a reality, pp. 217–249,
John Wiley & Sons, 2003.

[13] I. Foster. Globus Online: Accelerating and Democratizing Science
through Cloud-based Services. Internet Computing, IEEE, vol. 15(3),
pp. 70–73, May 2011.

[14] EGI. European Grid Infrastructure. Available at http://www.egi.
eu/ (accessed: January 22th, 2015).

[15] OSG. Open Science Grid. Available at http://www.
opensciencegrid.org/ (accessed: January 22nd, 2015).

[16] I. Bird. Computing for the Large Hadron Collider. Annual Review
of Nuclear and Particle Science, vol. 61, pp. 99–118, 2011.

[17] EMI. European Middleware Initiative. Available at http://www.
eu-emi.eu (accessed: January 22nd, 2015).

[18] I. Bird, F. Carminati et al. Update of the Computing Models of the
WLCG and the LHC Experiments. Tech. Rep. CERN-LHCC-2014-
014. LCG-TDR-002, CERN, Geneva, April 2014.

[19] D. Thain, T. Tannenbaum and M. Livny. Distributed Computing
in Practice: The Condor Experience. Concurrency and Computation:
Practice and Experience, vol. 17(2-4), pp. 323–356, Wiley Online Li-
brary, 2005.

[20] A. Dorigo, P. Elmer et al. Xrootd-A Highly Scalable Architecture
for Data Access. WSEAS Transactions on Computers, vol. 1(4.3),
2005.

[21] CERN. Large Hadron Collider. Available at http://public.
web.cern.ch/public/en/LHC/LHC-en.html (accessed: January 5th,
2015).

[22] WLCG. Worldwide LHC Computing Grid, 2015. Available at http:
//wlcg-public.web.cern.ch/ (accessed: January 19th, 2015).

[23] F. Donno, L. Abadie et al. Storage Resource Manager Version 2.2:
Design, Implementation, and Testing Experience. In J. Phys.: Conf.
Ser., vol. 119, p. 062028. IOP Publishing, 2008.

http://www.egi.eu/
http://www.egi.eu/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://www.eu-emi.eu
http://www.eu-emi.eu
http://public.web.cern.ch/public/en/LHC/LHC-en.html
http://public.web.cern.ch/public/en/LHC/LHC-en.html
http://wlcg-public.web.cern.ch/
http://wlcg-public.web.cern.ch/

Bibliography 185

[24] P. Andreetto, S. Andreozzi et al. The gLite Workload Manage-
ment System. In J. Phys.: Conf. Ser., vol. 119, p. 062007. IOP Pub-
lishing, 2008.

[25] CMS. Compact Muon Solenoid. Available at http://cms.web.cern.
ch/ (accessed: January 11th, 2015).

[26] J. Hernández, P. Kreuzer et al. CMS Monte Carlo Production in
the WLCG Computing Grid. In J. of Phys.: Conf. Series, vol. 119, p.
052019. IOP Publishing, 2008.

[27] E. Fajardo, O. Gutsche et al. A New Era for Central Processing
and Production in CMS. In J. of Phys.: Conf. Series, vol. 396, p.
042018. IOP Publishing, 2012.

[28] D. Spiga, S. Lacaprara et al. The CMS Remote Analysis Builder
(CRAB). In High Performance Computing–HiPC 2007, pp. 580–586.
Springer, 2007.

[29] I. Sfiligoi. glideinWMS–a Generic Pilot-based Workload Manage-
ment System. In J. Phys.: Conf. Ser., vol. 119, p. 062044. IOP Pub-
lishing, 2008.

[30] J. Rehn, T. Barrass et al. PhEDEx High-throughput Data Transfer
Management System. Computing in High Energy and Nuclear Physics
(CHEP) 2006, 2006.

[31] A. Delgado Peris, A. Fanfani et al. Data Location, Transfer and
Bookkeeping in CMS. Nuclear Phys. B-Proceedings Supplements, vol.
177, pp. 279–280, Elsevier, 2008.

[32] P. Mell and T. Grance. The NIST Definition of Cloud Computing.
National Institute of Standards and Technology, 2011.

[33] Amazon. Amazon Web Services. Available at http://aws.amazon.
com (accessed: January 17th, 2015).

[34] I. Foster, Y. Zhao et al. Cloud Computing and Grid Computing
360-Degree Compared. In Grid Computing Environments Workshop,
2008. GCE’08, pp. 1–10. Ieee, 2008.

[35] S. Ostermann, A. Iosup et al. A Performance Analysis of EC2
Cloud Computing Services for Scientific Computing. In Cloud Com-
puting, pp. 115–131. Springer, 2010.

[36] D. Evans, I. Fisk et al. Using Amazon’s Elastic Compute Cloud
to Dynamically Scale CMS Computational Resources. In J. of Phys.:
Conf. Series, vol. 331, p. 062031. IOP Publishing, 2011.

http://cms.web.cern.ch/
http://cms.web.cern.ch/
http://aws.amazon.com
http://aws.amazon.com

186 Bibliography

[37] R. Medrano Llamas, M. Cinquilli et al. Commissioning the
CERN IT Agile Infrastructure with Experiment Workloads. In J. of
Phys.: Conf. Series, vol. 513, p. 032066. IOP Publishing, 2014.

[38] P. Russom et al. Big Data Analytics. TDWI Best Practices Report,
Fourth Quarter, TDWI Research, 2011.

[39] Gartner. Press release: Gartner’s 2014 Hype Cycle for Emerging
Technologies Maps the Journey to Digital Business, August 2014.
Available at http://www.gartner.com/newsroom/id/2819918 (ac-
cessed: January 19th, 2015).

[40] B. Bockelman. Using Hadoop as a Grid Storage Element. In Journal
of physics: Conf. series, vol. 180, p. 012047. IOP Publishing, 2009.

[41] K. Ranganathan and I. Foster. Decoupling Computation and Data
Scheduling in Distributed Data-intensive Applications. In High Perfor-
mance Distributed Computing, 2002. HPDC-11 2002. Proc. 11th IEEE
Intl. Symp. on, pp. 352–358. IEEE, 2002.

[42] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Communications of the ACM, vol. 51(1), pp. 107–
113, ACM, 2008.

[43] T. Agerwala. A New Paradigm for Computing: Data-Centric Sys-
tems. Wired, December 2014. Available at http://www.wired.com/
2014/12/data-centric-systems/ (accessed: January 20th, 2015).

[44] A. Chervenak, I. Foster et al. The Data Grid: Towards an Ar-
chitecture for the Distributed Management and Analysis of Large Sci-
entific Datasets. Journal of network and computer applications, vol.
23(3), pp. 187–200, Elsevier, 2000.

[45] P. J. Denning. The Working Set Model for Program Behavior. Com-
munications of the ACM, vol. 11(5), pp. 323–333, ACM, 1968.

[46] M. Dalheimer, F.-J. Pfreundt and P. Merz. Agent-based Grid
Scheduling with Calana. In Parallel Processing and Applied Mathe-
matics, pp. 741–750. Springer, 2006.

[47] M. D. De Assuncao and R. Buyya. An Evaluation of Communi-
cation Demand of Auction Protocols in Grid Environments. In Proc.
of the 3rd Intl. Workshop on Grid Economics & Business (GECON
2006), vol. 16, 2006.

[48] ATLAS. ATLAS@HOME Project. Available at http://
atlasathome.cern.ch (accessed: February 17th, 2015).

http://www.gartner.com/newsroom/id/2819918
http://www.wired.com/2014/12/data-centric-systems/
http://www.wired.com/2014/12/data-centric-systems/
http://atlasathome.cern.ch
http://atlasathome.cern.ch

Bibliography 187

[49] C. Pinchak, P. Lu and M. Goldenberg. Practical Heterogeneous
Placeholder Scheduling in Overlay Metacomputers: Early Experiences.
In Job Scheduling Strategies for Parallel Processing, pp. 205–228.
Springer, 2002.

[50] J. Berthold, M. Dieterle et al. Hierarchical Master-Worker Skele-
tons. In Practical Aspects of Declarative Languages, pp. 248–264.
Springer, 2008.

[51] A. Tsaregorodtsev, V. Garonne et al. DIRAC–Distributed In-
frastructure with Remote Agent Control. In Proc. of CHEP2003, 2003.

[52] S. Bagnasco, L. Betev et al. AliEn: ALICE Environment on the
Grid. In J. Phys.: Conf. Ser., vol. 119, p. 062012. IOP Publishing,
2008.

[53] T. Maeno. PanDA: Distributed Production and Distributed Analysis
System for ATLAS. In J. Phys.: Conf. Ser., vol. 119, p. 062036. IOP
Publishing, 2008.

[54] D. Groep, O. Koeroo and G. Venekamp. gLExec: Gluing Grid
Computing to the Unix World. In J. Phys.: Conf. Ser., vol. 119, p.
062032. IOP Publishing, 2008.

[55] G. A. Stewart, D. Cameron et al. Storage and Data Management
in EGEE. In Proc. of the fifth Australasian symposium on ACSW
frontiers-Volume 68, pp. 69–77. Australian Computer Society, Inc.,
2007.

[56] P. Canal, B. Bockelman and R. Brun. ROOT I/O: The Fast and
Furious. In J. Phys.: Conf. Ser., vol. 331, p. 042005. IOP Publishing,
2011.

[57] M. Bencivenni, F. Bonifazi et al. A Comparison of Data-Access
Platforms for the Computing of Large Hadron Collider Experiments.
Nuclear Science, IEEE Transactions on, vol. 55(3), pp. 1621–1630,
IEEE, 2008.

[58] A. J. Peters and L. Janyst. Exabyte Scale Storage at CERN. In
J. Phys.: Conf. Ser., vol. 331, p. 052015. IOP Publishing, 2011.

[59] G. L. Presti, O. Barring et al. CASTOR: A Distributed Storage
Resource Facility for High Performance Data Processing at CERN. In
MSST, vol. 7, pp. 275–280. Citeseer, 2007.

[60] D. G. Cameron, R. Carvajal-Schiaffino et al. Evaluating
Scheduling and Replica Optimisation Strategies in OptorSim. In Proc.
of the 4th Intl. Workshop on Grid Computing, p. 52. IEEE Computer
Society, 2003.

188 Bibliography

[61] R. McClatchey, A. Anjum et al. Data Intensive and Network
Aware (DIANA) Grid Scheduling. Journal of Grid Computing, vol.
5(1), pp. 43–64, Springer, 2007.

[62] S. Venugopal, R. Buyya and L. Winton. A Grid Service Broker
for Scheduling Distributed Data-oriented Applications on Global Grids.
In Proc. of the 2nd workshop on Middleware for grid computing, pp.
75–80. ACM, 2004.

[63] T. Maeno, K. De et al. Evolution of the ATLAS PanDA Production
and Distributed Analysis System. In J. Phys.: Conf. Ser., vol. 396, p.
032071. IOP Publishing, 2012.

[64] A. Chervenak, E. Deelman et al. Data Placement for Scientif-
ic Applications in Distributed Environments. In Proc. of the 8th
IEEE/ACM Intl. Conf. on Grid Computing, pp. 267–274. IEEE Com-
puter Society, 2007.

[65] M. Korupolu, A. Singh and B. Bamba. Coupled Placement in
Modern Data Centers. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE Intl. Symp. on, pp. 1–12. IEEE, 2009.

[66] Apache. The Hadoop Project. Available at http://hadoop.apache.
org/ (accessed: February 7th, 2015).

[67] S. Ghemawat, H. Gobioff and S.-T. Leung. The Google File
System. In ACM SIGOPS operating systems review, vol. 37, pp. 29–
43. ACM, 2003.

[68] K. Shvachko, H. Kuang et al. The Hadoop Distributed File System.
In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symp. on, pp. 1–10. IEEE, 2010.

[69] J. Bent, D. Rotem et al. Coordination of Data Movement with Com-
putation Scheduling on a Cluster. In Challenges of Large Applications
in Distributed Environments, 2005. CLADE 2005. Proc., pp. 25–34.
IEEE, 2005.

[70] S. Shankar and D. J. DeWitt. Data Driven Workflow Planning
in Cluster Management Systems. In Proc. of the 16th Intl. Symp. on
High Performance Distributed Computing, HPDC ’07, pp. 127–136.
ACM, New York, NY, USA, 2007.

[71] V. K. Vavilapalli, A. C. Murthy et al. Apache Hadoop YARN:
Yet Another Resource Negotiator. In Proc. of the 4th annual Symp.
on Cloud Computing, p. 5. ACM, 2013.

http://hadoop.apache.org/
http://hadoop.apache.org/

Bibliography 189

[72] M. Zaharia, M. Chowdhury et al. Spark: Cluster Computing with
Working Sets. In Proc. of the 2nd USENIX conf. on Hot Topics in
Cloud Computing, pp. 10–10, 2010.

[73] M. Zaharia, D. Borthakur et al. Delay Scheduling: a Simple Tech-
nique for Achieving Locality and Fairness in Cluster Scheduling. In
Proc. of the 5th European Conf. on Computer systems, pp. 265–278.
ACM, 2010.

[74] M. Schwarzkopf, A. Konwinski et al. Omega: Flexible, Scalable
Schedulers for Large Compute Clusters. In Proc. of the 8th ACM
European Conf. on Computer Systems, pp. 351–364. ACM, 2013.

[75] V. Garonne, G. A. Stewart et al. The ATLAS Distributed Data
Management Project: Past and Future. In J. Phys.: Conf. Ser., vol.
396, p. 032045. IOP Publishing, 2012.

[76] K. Bloom, C. Collaboration et al. CMS Use of a Data Federation.
In J. Phys.: Conf. Ser., vol. 513, p. 042005. IOP Publishing, 2014.

[77] H. Balakrishnan, M. Kaashoek et al. Looking up Data in P2P
Systems. Communications of the ACM, vol. 46(2), pp. 43–48, ACM,
2003.

[78] M. Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Net-
work. In Peer-to-Peer Computing, 2001. Proceedings. First Interna-
tional Conference on, pp. 99–100. IEEE, 2001.

[79] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Revised Papers from
the First Intl. Workshop on Peer-to-Peer Systems (IPTPS ’01), pp.
53–65. Springer-Verlag, London, UK, 2002.

[80] D. Karger, E. Lehman et al. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proc. of the 29th Annual ACM Symp. on Theory
of Computing, STOC ’97, pp. 654–663. ACM, New York, NY, USA,
1997.

[81] S. El-Ansary and S. Haridi. An Overview of Structured P2P Over-
lay Networks. Swedish Institute of Computer Science and Royal Insti-
tute of Technology, 2004.

[82] H. Zhang, Y. Wen et al. DHT Applications. In Distributed Hash
Table, SpringerBriefs in Computer Science, pp. 39–55. Springer New
York, 2013.

190 Bibliography

[83] P. Druschel and A. Rowstron. PAST: A Large-scale, Persistent
Peer-to-Peer Storage Utility. In Hot Topics in Operating Systems,
2001. Proc. of the Eighth Workshop on, pp. 75–80. IEEE, 2001.

[84] I. Clarke, O. Sandberg et al. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In Designing Privacy En-
hancing Technologies, pp. 46–66. Springer, 2001.

[85] B. Fitzpatrick. Distributed Caching with Memcached. Linux journal,
vol. 2004(124), p. 5, Belltown Media, 2004.

[86] A. Chazapis, A. Zissimos and N. Koziris. A Peer-to-Peer Replica
Management Service for High-Throughput Grids. In Intl. Conf. on
Parallel Processing, 2005, pp. 443–451. IEEE, 2005.

[87] Y. Yang, K. Liu et al. Peer-to-Peer Based Grid Workflow Runtime
Environment of SwinDeW-G. In IEEE Intl. Conf. on e-Science and
Grid Computing, pp. 51–58. IEEE, 2007.

[88] J. Cao, O. M. Kwong et al. A Peer-to-Peer Approach to Task
Scheduling in Computation Grid. In Grid and Cooperative Computing,
pp. 316–323. Springer, 2004.

[89] M. Rahman, R. Ranjan and R. Buyya. Cooperative and Decentral-
ized Workflow Scheduling in Global Grids. Future Generation Com-
puter Systems, vol. 26(5), pp. 753–768, Elsevier, 2010.

[90] I. Stoica, R. Morris et al. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. ACM SIGCOMM Computer Com-
munication Review, vol. 31(4), pp. 149–160, ACM, 2001.

[91] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems.
In Middleware 2001, pp. 329–350. Springer, 2001.

[92] M. Steiner, T. En-Najjary and E. W. Biersack. A Global View
of Kad. In Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pp. 117–122. ACM, 2007.

[93] J. Pouwelse, P. Garbacki et al. The Bittorrent P2P File-sharing
System: Measurements and Analysis. In Peer-to-Peer Systems IV, pp.
205–216. Springer, 2005.

[94] J. Li, K. Sollins and D. Lim. Implementing Aggregation and Broad-
cast over Distributed Hash Tables. ACM SIGCOMM Computer Com-
munication Review, vol. 35(1), pp. 81–92, ACM, 2005.

Bibliography 191

[95] A. Ghodsi, L. Onana Alima et al. Self-Correcting Broadcast in
Distributed Hash Tables. In 15th IASTED Intl. Conf., Parallel and
Distributed Computing and Systems (PDCS). ACTA Press, 2003.

[96] F. Lin, C. Henricsson et al. HyperCircle: An Efficient Broadcast
Protocol for Super-Peer P2P Networks. In Intl. Conf. on Computa-
tional Science and Engineering (CSE), 2009, vol. 2, pp. 426–433. IEEE,
2009.

[97] S. El-Ansary, L. Alima et al. Efficient Broadcast in Structured
P2P Networks. In 2nd Intl. Workshop On Peer-To-Peer Systems
(IPTPS’03), pp. 304–314. Springer, 2003.

[98] K. Huang and D. Zhang. DHT-based Lightweight Broadcast Algo-
rithms in Large-Scale Computing Infrastructures. Future Generation
Computer Systems, vol. 26(3), pp. 291–303, Elsevier, 2010.

[99] W. Li, S. Chen et al. An Efficient Broadcast Algorithm in Distributed
Hash Table under Churn. In Intl. Conf. on Wireless Communications,
Networking and Mobile Computing (WiCom), 2007, pp. 1929–1932.
IEEE, 2007.

[100] M. Wahlisch, T. Schmidt and G. Wittenburg. Broadcasting in
Prefix Space: P2P Data Dissemination with Predictable Performance.
In Fourth Intl. Conf. on Internet and Web Applications and Services
(ICIW’09), pp. 74–83. IEEE, 2009.

[101] A. Delgado Peris, J. M. Hernández and E. Huedo. Evaluation
of the Broadcast Operation in Kademlia. In IEEE 14th Intl. Conf.
on High Performance Computing and Communication & IEEE 9th
Intl. Conf. on Embedded Software and Systems (HPCC-ICESS), pp.
756–763. IEEE Computer Society, 2012.

[102] Z. Czirkos and G. Hosszú. Solution for the Broadcasting in the
Kademlia Peer-to-Peer Overlay. Computer Networks, vol. 57(8), pp.
1853–1862, Elsevier, 2013.

[103] P. Merz and K. Gorunova. Efficient Broadcast in P2P Grids. In
IEEE Intl. Symp. on Cluster Computing and the Grid (CCGrid), 2005,
vol. 1, pp. 237–242. IEEE, 2005.

[104] J. Moscicki, M. Lamanna et al. Processing Moldable Tasks on the
Grid: Late Job Binding with Lightweight User-level Overlay. Future
Generation Computer Systems, vol. 27(6), pp. 725 – 736, 2011.

[105] J. Hernández, D. Evans and S. Foulkes. Multi-core Processing
and Scheduling Performance in CMS. In J. Phys.: Conf. Ser., vol. 396,
p. 032055. IOP Publishing, 2012.

192 Bibliography

[106] H. Stockinger, F. Donno et al. Matchmaking, Datasets and
Physics Analysis. In Parallel Processing, 2005. ICPP 2005 Workshops.
Intl. Conf. Workshops on, pp. 21–28. IEEE, 2005.

[107] J.-P. Baud, J. Casey et al. Performance Analysis of a File Catalog
for the LHC Computing Grid. In High Performance Distributed Com-
puting, 2005. HPDC-14. Proc. 14th IEEE Intl. Symp. on, pp. 91–99.
IEEE, 2005.

[108] D. Crockford. The Application/json Media Type for Javascript
Object Notation (JSON), June 2006. RFC 4627.

[109] S. K. Paterson and A. Tsaregorodtsev. DIRAC Optimized
Workload Management. In J. Phys.: Conf. Ser., vol. 119, p. 062040.
IOP Publishing, 2008.

[110] D. Bradley, T. St Clair et al. An Update on the Scalability Limits
of the Condor Batch System. In J. Phys.: Conf. Ser., vol. 331, p.
062002. IOP Publishing, 2011.

[111] J. D. Ullman. NP-Complete Scheduling Problems. Journal of Com-
puter and System Sciences, vol. 10(3), pp. 384–393, Elsevier, 1975.

[112] A. Delgado Peris, J. M. Hernández et al. Data Location-aware
Job Scheduling in the Grid. Application to the Gridway Metascheduler.
In Journal of Physics: Conference Series, vol. 219, p. 062043. IOP
Publishing, 2010.

[113] A. Delgado Peris, J. M. Hernández and E. Huedo. Evalua-
tion of Alternatives for the Broadcast Operation in Kademlia under
Churn. Peer-to-Peer Networking and Applications, Springer, 2015.
DOI: http://dx.doi.org/10.1007/s12083-015-0338-y.

[114] K. Hasham, A. Delgado Peris et al. CMS Workflow Execution
Using Intelligent Job Scheduling and Data Access Strategies. IEEE
Transactions on Nuclear Science, vol. 58(3), pp. 1221–1232, IEEE,
2011.

[115] A. Delgado Peris, J. M. Hernández and E. Huedo. Distribut-
ed Scheduling and Data Sharing in Late-binding Overlays. In High
Performance Computing Simulation (HPCS), 2014 Intl. Conf. on, pp.
129–136, July 2014.

[116] CherryPy. A Minimalist Python Web Framework. Available at http:
//cherrypy.org/ (accessed: April 9th, 2015).

[117] Asyncore. Asynchronous Socket Handler. Available at http://
docs.python.org/2/library/asyncore.html (accessed: April 13th,
2015).

http://dx.doi.org/10.1007/s12083-015-0338-y
http://cherrypy.org/
http://cherrypy.org/
http://docs.python.org/2/library/asyncore.html
http://docs.python.org/2/library/asyncore.html

	Cover
	Forewords
	Acknowledgments
	Dedication
	Agradecimientos
	Abstract
	Resumen
	Publications and Personal Contribution

	Indices
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Organization of the Document

	I Large-scale Distributed Data-intensive Computing
	2 Large-scale Computing
	2.1 The Grid
	2.1.1 The Grid Vision
	2.1.2 Grid Middleware
	2.1.3 The Worldwide LHC Computing Grid

	2.2 The Cloud
	2.2.1 What is the Cloud
	2.2.2 Cloud Computing for Scientific Research

	2.3 Big Data
	2.3.1 It is the Data

	3 Workload and Data Management
	3.1 Workload Execution
	3.1.1 Traditional Grid Brokering
	3.1.2 Late-binding Pilot Overlays

	3.2 Data Management
	3.2.1 Storage Elements
	3.2.2 Data Distribution

	3.3 Data-intensive Scheduling
	3.3.1 Grid Scheduling
	3.3.2 Cluster Scheduling

	3.4 Trends
	3.4.1 Mainstream Products
	3.4.2 Scientific Computing

	4 Distributed Hash Tables
	4.1 DHTs
	4.1.1 General Description
	4.1.2 Applications
	4.1.3 Examples

	4.2 Kademlia
	4.3 Broadcasting in DHTs
	4.3.1 Partition-based Broadcasting
	4.3.2 Prefix-based Broadcasting
	4.3.3 Related Work on Kademlia Broadcasting

	4.4 Churn and Failure Rate
	4.5 Evaluation Metrics

	II Architectures for Efficient Data Access
	5 Evaluation of Data Access and Task Binding
	5.1 Data Access
	5.1.1 Collocating Jobs and Data
	5.1.2 Accessing Storage Elements Data
	5.1.3 Pilots Data Cache

	5.2 Early-binding vs Late-binding
	5.2.1 Modelling Early- and Late-binding Approaches
	5.2.2 Workload Throughput Considerations

	5.3 Intelligent Micro-Scheduling

	6 Data-location Aware Scheduling
	6.1 Data Location Awareness
	6.1.1 Data Replication and Management

	6.2 The GridWay Meta-scheduler
	6.2.1 Data-location Aware GridWay

	6.3 Evaluation
	6.3.1 Delay Introduced by the Catalogue Queries
	6.3.2 Application of Different Scheduling Policies

	6.4 Coordinated Workflow and Data Placement
	6.4.1 Data Placement System
	6.4.2 Workflow Management System
	6.4.3 Decoupled Systems

	7 Late-binding Overlay
	7.1 The Task Queue Architecture
	7.1.1 Overview
	7.1.2 Pilot Management
	7.1.3 Pilot Job Operation

	7.2 Data Caching
	7.2.1 Per-host Cache Sharing

	7.3 Job Matching. Micro-scheduling
	7.3.1 Micro-scheduling in the TQ Architecture

	7.4 Evaluation
	7.4.1 Tier-0 Tests
	7.4.2 CIEMAT Tests

	III DHT-based Late-binding Scheduling and Data Sharing
	8 Evaluation of Data Caching and Centralized Scheduling
	8.1 Distributed Data Caching
	8.2 Scheduling Overhead
	8.2.1 Impact of Scheduling Delay: Optimal Task Length

	8.3 Pilots Autonomy
	8.4 Micro-scheduling and Global Rank

	9 Broadcasting in Kademlia
	9.1 Particularities of Kademlia
	9.2 Existing Protocols
	9.2.1 Partition-based Broadcasting
	9.2.2 Prefix-based Broadcasting

	9.3 Bucket-based Broadcasting
	9.3.1 Demonstration for the Bucket-based Broadcasting

	9.4 Fighting Churn
	9.4.1 Expected Coverage Under Failure Conditions
	9.4.2 Empty Regions Re-assignment
	9.4.3 Redundancy
	9.4.4 Direct ACKs and Resubmissions
	9.4.5 Other Churn Fighting Techniques

	9.5 Evaluation
	9.5.1 Testbed and Setup
	9.5.2 Coverage under Different Conditions
	9.5.3 Other Metrics
	9.5.4 Summary of Algorithms Evaluation

	10 Distributed Data Caching and Job Matching
	10.1 Custom Kademlia Implementation
	10.2 Distributed Data Caching
	10.3 Distributed Job Matching
	10.3.1 Task Matching and Ranking

	10.4 Evaluation
	10.4.1 Pressure on Task Queue and Scheduling Overhead
	10.4.2 Cache Hit Ratio
	10.4.3 Distributed Matching Ranking
	10.4.4 Pilots Autonomy from Task Queue

	10.5 Other Tests
	10.5.1 Task Length and Workflow Turnaround Time
	10.5.2 Data Access Patterns
	10.5.3 Operation in a SE-less Resource Center

	IV Conclusions
	11 Conclusions
	11.1 Conclusions
	11.2 Outlook and Future Work

	V Appendices
	A Implementation and Architecture Details
	A.1 Complete Task Queue Architecture
	A.2 Task Queue Internals
	A.3 Pilot Release Algorithm and Thresholds
	A.3.1 Pilot Release Algorithm
	A.3.2 Site Thresholds

	A.4 Pilots Internals
	A.5 DHT Testbed Internals
	A.6 Non-CMS Testbed Internals

	Resumen en español
	List of Acronyms
	Bibliography

