
TESIS DOCTORAL

Aplicación de Computación Evolutiva y

Paralelismo para la Resolución de

Problemas de Astrof́ısica

Application of Evolutionary Computation and Parallelism for

Solving Problems of Astrophysics

Miguel Cárdenas Montes

Departamento de Tecnoloǵıa de los Computadores y de las Comunicaciones

Conformidad del Director:

Dr. Miguel Ángel Vega Rodŕıguez

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

Cáceres, 2014

./LogoUNEX.eps

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Miguel Cárdenas Montes

A mi familia.

The Cosmos is all that is or ever was or ever will be.

Carl Edward Sagan

Art. 13. El objeto del Gobierno es la felicidad de la Nación, puesto que el

fin de toda sociedad poĺıtica no es otro que el bienestar de los individuos

que la componen.

CONSTITUCIÓN DE CÁDIZ DE 1812

Citations to Previously Published Works

The Chapter 3 has been constructed based, among others, on the publica-

tions:

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Gómez-

Iglesias, Antonio: Sensitiveness of Evolutionary Algorithms to

the Random Number Generator, ICANNGA (1), LNCS, Springer,

371-380, Eds: Dobnikar, Andrej, Lotric, Uros, and Ster, Branko, 2011

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias,

Antonio, and Morales-Ramos, Enrique: Exploration of the Con-

jecture of Bateman using Particle Swarm Optimization and

Grid Computing, 8th International Symposium on Parallel and Dis-

tributed Computing, ISPDC, IEEE Computer Society, 143-150, 2009

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Garćıa Orel-

lana, Carlos J., Rubio del Solar, Manuel, Gómez Pulido, Juan Anto-

nio, González Velasco, Horacio M., Gómez-Iglesias, Antonio, Sánchez-

Pérez, Juan Manuel, and Maćıas Maćıas, Miguel: Volunteer Com-

puting, an Interesting Option for Grid Computing: Extre-

madura as Case Study, OTM Workshops (1), LNCS, Springer, 29-

30, Eds: Meersman, Robert, Tari, Zahir, and Herrero, Pilar, 2007

Sections of the Chapter 4 can be also found in:

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A.: Effect of data

layout in the evaluation time of non-separable functions on

GPU, Computing and Informatics, 1-21, ISSN: 1335-9150, 2015, Ac-

cepted (Impact Factor = 0,254 en 2012)

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Váz-

quez, Juan José, and Gómez-Iglesias, Antonio: Effect of the Block

Occupancy in GPGPU over the Performance of Particle Swarm

Algorithm, ICANNGA (1), LNCS, Springer, 310-319, Eds: Dobnikar,

Andrej, Lotric, Uros, and Ster, Branko, 2011

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Váz-

quez, Juan José, and Gómez-Iglesias, Antonio: GPU-Based Evalua-

tion to Accelerate Particle Swarm Algorithm, EUROCAST (1),

LNCS, Springer, 272-279, Eds: Moreno-Dı́az, Roberto, Pichler, Franz,

and Quesada-Arencibia, Alexis, 2011

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Váz-

quez, Juan Jose, and Gómez-Iglesias, Antonio: Accelerating Par-

ticle Swarm Algorithm with GPGPU, 16th Euromicro Interna-

tional Conference on Parallel, Distributed and Network-Based Process-

ing, PDP, IEEE Computer Society, 560-564, Eds: Cotronis, Yiannis,

Danelutto, Marco, and Papadopoulos, George Angelos, 2011

Some parts of the Chapter 5 have been also published in:

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Mollá, Mer-

cedes: Metaheuristics for Modelling Low-Resolution Galaxy

Spectral Energy Distribution, HAIS, LNAI, Springer, 490-501,

Eds: Polycarpou, Marios M. et al., 2014

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Mollá, Mer-

cedes: Metaoptimization of Differential Evolution by Using

Productions of Low-Number of Cycles: The Fitting of Ro-

tation Curves of Spiral Galaxies as Case Study, HAIS, LNAI,

Springer, 356-365, Eds: Pan, Jeng-Shyang, Polycarpou, Marios M.,

Wozniak, Michal, Carvalho, André C. P. L. F., Quintián-Pardo, Héctor,

and Corchado, Emilio, 2013

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Gómez-

Iglesias, Antonio: Real-World Problem for Checking the Sen-

sitiveness of Evolutionary Algorithms to the Choice of the

Random Number Generator, HAIS (1), LNAI, Springer, 385-396,

Eds: Corchado, Emilio, Snásel, Václav, Abraham, Ajith, Wozniak,

Michal, Graña, Manuel, and Cho, Sung-Bae, 2012

Large portions of Chapter 6 have appeared in the following papers:

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Bonnett, Chris-

topher, Sevilla-Noarbe, Ignacio, Ponce, Rafael, Sánchez Álvaro, Euse-

bio, Rodŕıguez-Vázquez, Juan José: GPU-Based Shear-Shear Cor-

relation Calculation, Computer Physics Communications, 185(1):11-

18, ISSN: 0010-4655, 2014 (Impact Factor = 3,078 en 2012, Quartile

Q1)

Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan José, Vega-Ro-

dŕıguez, Miguel A., Sevilla-Noarbe, Ignacio, Sánchez Álvaro, Eusebio:

Performance and precision of the histogram calculation on

GPU: cosmological analysis as case study, Computer Physics

Communications, 1-27, ISSN: 0010-4655, Accepted (Impact Factor =

3,078 en 2012, Quartile Q1)

Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Sevilla, Igna-

cio, Ponce, Rafael, Rodŕıguez-Vázquez, Juan José, Sánchez Álvaro,

Eusebio: Concurrent CPU-GPU Code Optimization: The Two-

Point Angular Correlation Function as Case Study, CAEPIA,

LNAI, Springer, 209-218, Eds: Bielza, C.; Salmeron, A.; Alonso-

Betanzos, A.; Hidalgo, J.I.; Mart́ınez, L.; Troncoso, A.; Corchado,

E.; Corchado, J.M., 2013

Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan José, Sevilla, Igna-

cio, Sánchez Álvaro, Eusebio, Ponce, Rafael, Vega-Rodŕıguez, Miguel

A., Bonnett, Christopher: High-Performance Implementations

for Shear-Shear Correlation Calculation. Cluster, IEEE Com-

puter Society, 2014. Submitted.

Acknowledgements

I warrant that I have obtained, where necessary, permission from the copy-

right owners to use any third-party copyright material reproduced in the

Thesis, or to use any of my own published work in which the copyright is

held by another party.

Agradecimientos

Los trabajos que requiere una tesis suponen un desaf́ıo para la persona que

acomete la tarea, aśı como para su entorno familiar. Por ello, es necesario

reconocer el esfuerzo que realiza el entorno familiar para soportar, śı éste

es el verbo adecuado, soportar los cambios en el estado de ánimo del doc-

torando. Por ello el primer agradecimiento es para mi familia: mi mujer

Irene, mi hija Ana, y mis padres Miguel y Manoli. Ellos han creado las

condiciones de contorno adecuadas para la consecución con éxito de esta

misión.

La relación que se establece entre un director de tesis y su doctorando guarda

cierto parecido con una relación de noviazgo. En ella, para que la relación

llegue a buen puerto es necesario que ambas personas sean compatibles.

Sin Miguel Ángel Vega esta tesis no hubiera sido posible. Miguel Ángel ha

sabido adaptarse a mis peculiaridades, permitiéndome desarrollar el trabajo

en función de mis intereses y del tiempo disponible.

El tercer apoyo sin el cual esta tesis no habŕıa sido posible es mi exjefe

Nicanor Colino. Él me rescató, justo cuando nadie daba un duro por mı́.

Además, vio mis muy pequeñas virtudes frente a mis grandes defectos.

En estos años de trabajo en CIEMAT ha habido periodos más felices y otros

no tanto. Durante uno de estos periodos oscuros, mi amigo Antonio Gómez

se mantuvo a mi lado. Sin importarle las consecuencias, Antonio supo cual

era la postura moral correcta, y no hay suficientes palabras en este escrito

para agradecerle su actitud. Durante el tiempo compartido con Antonio he

podido disfrutar de su brillantez, inteligencia, humor y fina irońıa.

En estos años en CIEMAT he compartido una gran parte de mi trabajo,

comidas y muchos cafés con mi amigo Juan José Rodŕıguez. Nuestras con-

versaciones son interminables, abarcando todos los ámbitos: poĺıtica, edu-

cación, ciencia, informática, GPUs, etc. Todas enriquecedoras. Aunque es

una palabra en desuso, en nuestra provincial natal se utiliza muy a menudo,

Juanjo es una personal cabal como pocas.

Finalmente, agradecer a todos aquellos con los que he compartido grandes

ratos, conversaciones y viajes, Francisco Castejón de quien copié su lema

de 6 puntos para obtener buenos resultados profesionales: trabajo, trabajo,

trabajo, calidad, calidad y calidad, a Antonio Delgado, Eusebio Sánchez, Na-

cho Sevilla, Rafa Ponce, Jorge Berenguer, Mercedes Mollá, Concha Braña,

Manuel Aguilar, Chema y Ricardo.

Abstract

The scientific activity is destined to face the challenges of the epoch in

which it develops. Nowadays the society, and therefore the science, face the

challenge of adequately handling volumes of information without precedent

in the history of the humankind.

In the area of astronomy, astrophysics and cosmology, the appearance of

these enormous volumes of high-quality information has taken place as a

consequence of the digitalization of the facilities. This increment is forcing

to the practitioners to face new challenges associated with the management

and the analysis of these data. This fact, still far from being temporary,

will aggravate in the near future due to the improvements in the spatial

and time resolution of the instruments. For this reason, in the next years

this scientific area will need additional computational efforts to provide to

the scientists of the necessary tools for the accomplishment of a scientific

production of high quality.

Concerning the data analysis, both the parallelism techniques, to improve

the processing speed; as well as the technologies related to evolutionary

computation or data mining, to extract knowledge of large volumes of in-

formation are widely applicable to problems in the field of astronomy, as-

trophysics and cosmology.

In the area of parallel computing, the new developments must mitigate the

penalty of the large execution times associated with the analysis of data

sets continuously growing. Particularly interesting it is the case of the

correlation functions used in cosmology. These functions have proved to

be extremely useful for the study of the large-scale structure of the Uni-

verse. Nevertheless, their computational complexity, O(Nm) where N it

is the number of points of the sample and m the order of the correlation,

make them computationally intensive. Without these developments in par-

allel computing and taking into account the volumes of information that

the scientists are going to face, the analysis of the large-scale structure of

the Universe will be penalized with unacceptable execution times for the

scientific activity.

In this scenario, the computing based on GPGPUs (General Purpose Com-

putation on Graphics Processing Unit) is an effective instrument for the

reduction of the execution time. It is capable of delivering a great capacity

of calculation, without penalizing the budget. This is suitable taking into

account the size and the dispersion of the scientific groups in this field.

In this Thesis, diverse parallel implementations of the two-point angular

correlation function and the shear-shear correlation function have been de-

veloped for evaluating their efficiency in reducing the execution time.

Beside increasing its volume, the scientific information is suffering from a

strong increase in its complexity. As a consequence of this fact, the extrac-

tion of synthetic knowledge from the information will need the contribution

of diverse technologies. Among others, it can be emphasized the use of

evolutionary algorithms and the data mining techniques.

The evolutionary algorithms are widely used in science for the search of

high-quality solutions in complex problems. Nevertheless in the area of

astronomy, astrophysics and cosmology the examples of use are still scanty.

In this Thesis, diverse examples associated with the use of the evolutionary

algorithms in problems of astrophysics have been evaluated. Among the

examples, the study of the rotation curves of galaxies and the modelling of

galactic spectra with simple stellar populations can be mentioned.

Additionally, other fundamental aspects of evolutionary algorithms, but es-

sential for their later application, such as the impact of the random number

generator in the performance of the evolutionary algorithms, or the strate-

gies of the parallelization of evolutionary algorithms have been also studied.

The application of the algorithms developed in this Thesis has produced a

net improvement of the scientific productivity if compared to the previous

state-of-the-art.

Resumen

La actividad cient́ıfica está destinada a enfrentarse a los retos de la época

en que se desarrolla. Hoy d́ıa la sociedad, y por ende la ciencia, se enfrentan

al reto de manejar adecuadamente volúmenes de datos sin precedente en la

historia de la humanidad.

En el área de astronomı́a, astrof́ısica y cosmoloǵıa, la aparición de estos

volúmenes ingentes de datos de alta calidad se ha producido como con-

secuencia de la digitalización de los instrumentos de observación. Este

incremento está obligando a los investigadores a encarar nuevos desaf́ıos

asociados con su gestión y análisis. Este hecho, aún lejos de ser pasajero, se

agravará en el futuro por las mejoras en la resolución espacial y temporal de

los instrumentos. Por ello, en los próximos años este área cient́ıfica requerirá

esfuerzos computacionales adicionales para proveer a los cient́ıficos de las

herramientas necesarias para la realización de una producción cient́ıfica de

alta calidad.

Con respecto al análisis de datos, tanto las técnicas de paralelismo, para

mejorar la velocidad de procesamiento; como las técnicas de computación

evolutiva o la mineŕıa de datos, para extraer conocimiento sintético de

grandes volúmenes de datos, son ampliamente aplicables a problemas en

el campo de astronomı́a, astrof́ısica y cosmoloǵıa.

En el campo de computación paralela, los nuevos desarrollos deben mitigar

la penalización de los grandes tiempos de ejecución asociados al análisis de

ficheros cada vez mayores. Particularmente interesante es el caso de las

funciones de correlaciones usadas en cosmoloǵıa. Estas funciones se mues-

tran extremadamente útiles para el estudio de la estructura del Universo

en escalas grandes. Sin embargo, la complejidad computacional de las mis-

mas, del orden O(Nm) donde N es el número de puntos de la muestra y

m el orden de correlación, las hace computacionalmente intensivas. Sin

los desarrollos en computación paralela adecuados y teniendo en cuenta los

volúmenes de datos de que van a disponer los cient́ıficos, el análisis de la

estructura de Universo en escalas grandes se verá penalizado con tiempos

de ejecución inasumibles para la actividad cient́ıfica.

En este escenario, la computación de propósito general basada en tarjetas de

procesamiento gráfico, GPGPUs, es un instrumento eficaz para la reducción

del tiempo de ejecución. La computación con GPGPU es capaz de entregar

una gran capacidad de cálculo, sin requerir un elevado presupuesto. Esto

es adecuado teniendo en cuenta el tamaño y dispersión de los grupos de

investigación en estas disciplinas cient́ıficas.

En esta Tesis se han desarrollado diversas implementaciones paralelas de la

función de correlación angular de dos puntos y de la función de correlación

de la distorsión de la forma de la galaxia a fin de evaluar la eficiencia de las

mismas para reducir los tiempos de ejecución.

Además del incremento en volumen, los datos están sufriendo un fuerte

incremento en su complejidad. Como consecuencia de este hecho, la extrac-

ción de conocimiento sintético de los datos requerirá de la aportación de

numerosas técnicas. Entre éstas se puede destacar el uso de los algoritmos

evolutivos o la mineŕıa de datos.

Los algoritmos evolutivos son ampliamente utilizados en ciencia para la

búsqueda de soluciones de alta calidad en problemas complejos, sin embargo

en el área de astronomı́a, astrof́ısica y cosmoloǵıa los ejemplos son aún

escasos.

En esta Tesis se han evaluado aspectos asociados al uso de los algoritmos

evolutivos en problemas de astrof́ısica, como por ejemplo el estudio de las

curvas de rotación de galaxias o la modelización de espectros galácticos con

poblaciones estelares simples; aśı como aspectos más fundamentales, pero

esenciales para su posterior aplicación, como el impacto del generador de

números aleatorios en el rendimiento del algoritmo evolutivo, o las estrate-

gias para la paralelización de los algoritmos evolutivos.

La aplicación de los algoritmos desarrollados en esta Tesis ha producido una

mejora neta de la productividad cient́ıfica comparada con los desarrollos

previos existentes.

Contents

List of Figures xix

List of Tables xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Organization of the Document . 4

2 Methods and Hardware 7

2.1 Introduction . 7

2.2 Methods . 7

2.2.1 Statistics . 7

2.2.2 Support Vector Machine . 8

2.2.3 Random Number Generator . 8

2.2.3.1 Sensitiveness to the RNG 9

2.3 Computational Infrastructure . 10

2.3.1 Grid . 10

2.3.2 Cluster Computing . 10

2.3.3 GPU Resources . 11

2.3.3.1 GPU Hardware Used in the 2PACF 11

2.3.3.2 GPU Hardware Used in the Shear-Shear Correlation

Calculation and Other Works 11

2.3.3.3 Overview of GPU Architecture and Programming Model 11

3 Evolutionary Algorithms 15

3.1 Introduction . 15

3.2 Related Work . 15

3.2.1 Related Work for the Sensitiveness of Evolutionary Algorithms

to the Random Number Generator 15

xiii

CONTENTS

3.2.2 Related Work for the Analysis of Behaviour of Evolutionary Al-

gorithms: Particle Swarm Algorithm as Case Study 16

3.2.3 Related Work for the Application of Evolutionary Algorithms to

the Resolution of Complex Problems: Bateman Conjecture as

Case Study . 16

3.3 Computational Platforms for Analysing Evolutionary Algorithms 16

3.3.1 Taxonomy of Grid Applications 16

3.3.1.1 Taxonomy Based on the Application Type 17

3.3.1.2 Extended Flynn Taxonomy 18

3.3.1.3 Scientific Community Taxonomy 19

3.3.1.4 Topological Taxonomy 20

3.3.2 Volunteer Computing . 21

3.4 Sensitiveness of Evolutionary Algorithms to the Random Number Gen-

erator . 22

3.4.1 Production Setup . 23

3.4.2 Results and Analysis . 25

3.5 Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm Al-

gorithm as Case Study . 26

3.5.1 Performance Improvement in Multipopulation Particle Swarm

Algorithm . 26

3.5.1.1 Multipopulation Modifications in PSO 27

3.5.1.2 Results and Analysis 28

3.5.2 Study of Performance of Particle Swarm Optimization Algorithms

Using Grid Computing . 31

3.5.2.1 Weaknesses of Standard Particle Swarm Optimization . 31

3.5.2.2 Production Setup . 31

3.5.2.3 Results and Analysis 32

3.6 Application of Evolutionary Algorithms to the Resolution of Complex

Problems: Bateman Conjecture as Case Study 36

3.6.1 Brute Force Approach . 36

3.6.2 Particle Swarm Optimizer Approach 38

3.7 Conclusions . 39

4 GPU Computing 41

4.1 Introduction . 41

4.2 Related Work . 41

xiv

CONTENTS

4.2.1 Related Work for the Implementation of Evolutionary Algorithms

in GPU and Analysis of its Behaviour 41

4.2.2 Related Work for the Effect of Data Layout on GPU Evaluation

Time . 42

4.3 Implementation of Evolutionary Algorithms in GPU: PSO as Case Study 42

4.3.1 GPU-Based Evaluation to Accelerate Particle Swarm Algorithm 43

4.3.1.1 Parallel Models of Evolutionary Algorithms 43

4.3.1.2 Production Setup . 44

4.3.1.3 Adaptation of PSO Algorithm 44

4.3.1.4 Study of the Rosenbrock Function 44

4.3.1.5 Study of Schwefel’s Problem 1.2 47

4.3.1.6 Varying Population . 47

4.4 Analysis of the Behaviour of Evolutionary Algorithms in GPU: PSO as

Case Study . 48

4.4.1 Results and Analysis . 49

4.5 Effect of Data Layout on GPU Evaluation Time 50

4.5.1 Strategies Tested . 51

4.5.1.1 Strategy 1: Allocation of one Individual per Thread on

Registers. 51

4.5.1.2 Strategy 2: Allocation of one Individual per Thread on

Shared Memory. 52

4.5.1.3 Strategy 3: Allocation of one Individual per Thread-

Block on Share Memory with Coalesced Access to Global

Memory and Atomic Operations. 53

4.5.1.4 Strategy 4: Allocation of one Individual per Thread on

Registers with Coalesced Access to Global Memory. . . 54

4.5.1.5 Sequential Evaluation 55

4.5.2 Benchmark Functions . 55

4.5.3 Results and Analysis . 56

4.5.3.1 Rosenbrock Function 56

4.5.3.2 F2-Light and F2-Heavy 59

4.5.3.3 F4-Light and F4-Heavy 62

4.5.3.4 Rana Function . 65

4.6 Conclusions . 66

xv

CONTENTS

5 Application of Evolutionary Algorithms to Astrophysics Problems 67

5.1 Introduction . 67

5.1.1 Rotational Curves of Spiral Galaxy 67

5.1.2 Low-Resolution Galaxy Spectral Energy Distribution 68

5.2 Related Work . 68

5.2.1 Related Work for the Fitting of the Rotational Curves of Spiral

Galaxy . 68

5.2.2 Related Work for the Fitting of the Low-Resolution Galaxy Spec-

tral Energy Distribution . 69

5.2.3 Related Work for the Metaoptimization of Differential Evolution

by Using Productions of Low-Number of Cycles. 69

5.3 Application of Evolutionary Algorithm to Rotational Curves 70

5.3.1 Sensitiveness of Evolutionary Algorithms to the Choice of the

Random Number Generator: Rotational Curves of Spiral Galax-

ies as Case Study . 70

5.3.1.1 Production Setup . 71

5.3.1.2 Results and Analysis 73

5.3.2 Adjustment of Rotational Curves of Spiral Galaxy to Specific

Functional Forms Using Particle Swarm Algorithm and Differen-

tial Evolution . 77

5.3.2.1 Production Setup . 77

5.3.2.2 Results and Analysis 78

5.3.3 Metaoptimization of Differential Evolution by Using Productions

of Low-Number of Cycles: the Fitting of Rotation Curves of Spi-

ral Galaxies as Case Study . 79

5.3.3.1 Implementation . 81

5.3.3.2 Metaoptimization Production 81

5.3.3.3 Fitness Analysis . 82

5.3.3.4 Statistical Analysis . 85

5.3.3.5 Execution Time . 85

5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy

Distribution . 86

5.4.1 Structure of the Candidate Solutions 87

5.4.2 Results and Analysis . 87

5.4.2.1 Mutation Operator for SSP 87

5.4.2.2 Mutation Operator for Coefficients 89

5.4.2.3 PSO for Coefficients . 90

xvi

CONTENTS

5.4.2.4 Differential Evolution for Coefficients 90

5.4.2.5 Larger Number of Cycles 92

5.5 Conclusions . 94

6 Application of GPU Computing to Astrophysics Problems 95

6.1 Introduction . 95

6.1.1 The Two-Point Angular Correlation Function 95

6.1.2 The Three-Point Angular Correlation Function 96

6.1.3 The Shear-Shear Correlation Function 97

6.2 Related Work . 99

6.2.1 Related Work for the Two-Point Angular Correlation Function . 99

6.2.2 Related Work for the Shear-Shear Correlation Function 100

6.2.3 Related Work for the Improvement in the Precision of Histogram

on GPU . 100

6.3 Application of GPU Computing to the Two-Point Angular Correlation

Function . 103

6.3.1 GPU Implementation of 2PACF 103

6.3.2 Initial Results . 104

6.3.3 Code Optimization . 107

6.3.4 Concurrent Computing Optimization 109

6.3.4.1 Single Percentage Implementation 109

6.3.4.2 Multiple Percentages Implementation 110

6.4 Application of GPU Computing to Shear-Shear Calculation 114

6.4.1 General Description of the Program Flow 114

6.4.2 Memory Management . 114

6.4.3 Comparison with Athena Input Reference 116

6.4.4 Comparison with 1 Million Galaxies Input Reference 116

6.4.5 Code Optimization . 119

6.4.6 Heterogeneous Computing . 121

6.4.7 Further Code Optimization . 123

6.4.7.1 Reordering Loops . 123

6.4.7.2 Vectorization . 123

6.4.8 Hybrid MPI-CUDA Implementation 124

6.5 Improvement in the Precision of Histogram Calculation on GPU 126

6.5.1 Weaknesses of Number-Representation 126

6.5.2 Results and Analysis . 128

6.5.2.1 Float-based Implementation 128

xvii

CONTENTS

6.5.2.2 Integer-based Implementation 130

6.5.2.3 Unsigned-Integer-based Implementation 130

6.5.2.4 Unsigned-Long-Long-Integer-based Implementation . . 131

6.5.2.5 Float-based Alternative Implementation 132

6.5.3 Real Cases . 134

6.5.3.1 Two-Point Angular Correlation Function 135

6.5.3.2 Three-Point Angular Correlation Function 136

6.5.3.3 Shear-Shear Correlation Function 138

6.6 Conclusions . 141

7 Conclusions 143

7.1 Conclusions . 143

7.2 Future Work . 144

A Publications 147

A.1 JCR-indexed Journal Articles Arising from this Thesis 147

A.2 International Book Chapters Arising from this Thesis 147

A.3 International Conference Proceedings Arising from this Thesis 149

A.4 Other Publications Arising from this Thesis 151

A.5 Publications No-Related to PhD . 151

B Other Activities 157

B.1 Teaching . 157

B.2 Participation as Program Committee of International Conferences . . . 158

B.3 Reviewer of JCR-indexed Journals . 159

B.4 Research Projects Participation . 159

B.5 Other Merits . 160

Bibliography 163

xviii

List of Figures

3.1 Schema of the three exchange patterns employed in this study. 27

3.2 Solutions’ space explored for the Bateman Conjecture with the brute

force survey. 37

3.3 Growing up of aggregated execution time for the exploration of all prime

numbers lower than a threshold. 37

3.4 Solutions’ space explored for the Bateman Conjecture with PSO and

brute force approaches. 38

4.1 Comparative box plots —15 tries— for CPU and GPU codes of exe-

cution time for Rosenbrock function —left— and Schwefel Problem 1.2

—right—, and dimensionality 20,000 and 20 particles. 45

4.2 Comparative box plots of speedup and each dimensionality 1,000; 5,000;

10,000; 15,000 and 20,000, and 20 individuals for the Schwefel’s Problem

1.2. 47

4.3 Comparative box plots of speedup for diverse population size and dimen-

sionality 10,000 for the Schwefel’s Problem 1.2. 48

4.4 Comparative box plots of speed-up in GTX295 and TESLA C2050 for di-

verse configurations of threads per block —100%, 50%, 25% and 12.5%—

and 15 tries per configuration for the Schwefel’s Problem 1.2. 49

4.5 LinearSVM applied to the results of Rosenbrock function: the two data

categories correspond to sequential evaluation for small and mid-size

configurations, and S4 for large configurations. The support vectors for

the first class (sequential evaluation) are 1,000×1,000 and 500×2,000;
whereas for the second class (S4) is 1,500×1,500. 59

xix

LIST OF FIGURES

4.6 LinearSVM applied to the results of f2−light function: the two data cate-

gories correspond to sequential evaluation for small and mid-size configu-

rations, and S4 for large configurations. The support vectors for the first

class (sequential evaluation) are 4,000×1,000 and 1,000×4,000; whereas
for the second class (S4) is 4,000×4,000. 61

4.7 LinearSVM applied to the results of f2−heavy function: the three data

categories correspond to sequential evaluation for smaller configurations,

later when incrementing the problem size the best strategy becomes the

S3 one, and finally S4 for larger configurations. The support vectors

for the first class (sequential evaluation) are 16×16, and 20×20 for the

lowest configuration of the second class (S3). This second class has as

support vectors: from 20×20 to 100×400 and 400×100 for the largest

configurations. And finally, for the third class (S4) the support vector is

400×400. 61

4.8 LinearSVM applied to the results of f4−light function: the two data cate-

gories correspond to sequential evaluation for small and mid-size configu-

rations, and S4 for large configurations. The support vectors for the first

class (sequential evaluation) are: 500×8,000 and 1,000×1,000; whereas
for the second class (S4) is 1,000×4,000. 63

4.9 LinearSVM applied to the results of – f4−heavy function: the three data

categories correspond to sequential evaluation for tiny configurations,

later when incrementing the problem size the best strategy becomes the

S3 one, and finally S4 for larger configurations. The support vector for

the first class (sequential evaluation) is 10×10. For the second class (S3)

are 16×16 for the lowest configuration and 200×200 for the largest one.

Finally, for the third class (S4) are: 100×400 and 800×200 64

4.10 LinearSVM applied to the results of Rana function: the three data cat-

egories correspond to sequential evaluation for smaller configurations,

later when incrementing the problem size the best strategy becomes the

S3 one, and finally S4 for larger configurations. The support vectors

for the first class (sequential evaluation) are 20×20, and 40×40 for the

lowest configuration of the second class (S3). This second class has as

support vectors: from 40×40 to 200×200 for the largest configurations.

And finally, for the third class (S4) the support vector is 100×400 and

800×200. 65

xx

LIST OF FIGURES

5.1 Galaxy rotation curves —experimental data sets— used in this survey:

NGC2460, NGC4800, NGC3370 and NGC5394. 73

5.2 Comparison of the best adjustment obtained with the RNG tested for

galaxy NGC2460. 75

5.3 Comparison of the best adjustment obtained with the RNG tested for

galaxy NGC3370. 75

5.4 Comparison of the best adjustment obtained with the RNG tested for

galaxy NGC4800. 76

5.5 Comparison of the best adjustment obtained with the RNG tested for

galaxy NGC5394. 76

5.6 All rotation curves doubly normalized. 78

5.7 Panel (a) shows the comparative box plots for the best results obtained

for PSO and DE algorithms when using Legendre series, while panel (b)

shows the fitness evolution for the best result of each case studied 79

5.8 Absolute best result —the fittest adjustment to observational data—

obtained. Configuration used PSO with configuration of 100 particles

and 5,000 cycles, and a series of Legendre Polynomials of 50 degrees. . . 80

5.9 Results (µ and CR) of metaoptimizer after 25 executions for galaxies:

NGC2460 and NGC3370, and for 10 and 1,000 cycles. Top and right:

the histogram of the frequency of the values of the behavioural parameters. 83

5.10 Results when applying the mutation operator only to the SSPs. 88

5.11 Results when applying the mutation operator to the SSPs and DE to

the coefficients. 91

5.12 Scatter plots and histograms of SSPs (2 per solution) solutions (25 so-

lutions) when applying the mutation operator to the SSPs selection and

DE to the coefficients. 93

6.1 Angles and coordinates on a sphere for two galaxies i = (1,2) located at

(αi,δi). Figure taken from [50], used with the author’s permission. . . . 98

6.2 Execution time (ms) of 2PACF for concurrent execution by using a single

percentage (12 executions per case). 110

6.3 Panel (a, left) shows the comparative box plots for the percentages of

DD, RR and DR, while panel (b, right) shows the lines endorsing each

particular realization. 112

xxi

LIST OF FIGURES

6.4 Comparison of the results obtained with the GPU implementation and

ATHENA v1.54 OA=0.02 for the ATHENA input reference (40,546 galax-

ies): a) ξ+, c) ξ− and e) ξ×; and, b) 10
6×(ξGPU

+ −ξATH
+), d) 106×(ξGPU

−
−

ξATH
−

), and f) 106 × (ξGPU
×

− ξATH
×

). 117

6.5 Mean execution time (s) for ATHENA code for various opening angles

(radians) and GPU code for 1 million galaxies input reference (CFHTLenS).

The execution time of the GPU code is roughly equivalent to the ATHENA

code for an opening angle of 0.01 radians. For the same precision (’brute-

force’) the GPU implementation is a factor 68 faster than a CPU-based

code such as ATHENA. 118

6.6 Deviations of the GPU code results with respect to ATHENA results at

different opening angle settings, for the computation of ξ+ and ξ−. As

the OA becomes smaller, less approximations are made by the ATHENA

implementation, and the result converges to the GPU computed values

(to levels below 0.001%). 120

6.7 Execution time (s) for diverse CPU-processed percentages in the concur-

rent computing model. The dotted line is the reference to the baseline

code execution time, whereas the dashed line is the execution time after

L1 memory optimization. 122

6.8 Relative error, 100 · DDfloat−based−DDnew algorithm

DDnew algorithm
for the 2PACF between

the float-based implementation and the new algorithm for the CFHTLenS

input file (106 galaxies). The histogram is composed of 256 bins: 16 de-

grees with 16 bins per degree. 135

6.9 Standard deviation for the 2PACF for 10 runs of the float-based im-

plementation a) and the new algorithm b). The new algorithm repro-

duces always an identical result, therefore its standard deviation is null;

whereas in the float-based implementation the last significant digit varies

among the executions. 137

6.10 Relative error, 100 · DDfloat−based−DDnew algorithm

DDnew algorithm
for the 3PACF between

the float-based implementation and the new algorithm for a sub-set of

the CFHTLenS input file (104 galaxies in this test). The histogram is

composed of 256 bins: 1 bin per degree, with up to the 8th degree per

angle in the triplets. 138

xxii

LIST OF FIGURES

6.11 Standard deviation for the 3PACF and a sub-set of 104 galaxies of the

CFHTLenS data set for 10 runs of the float-based implementation a) and

the new algorithm b). The new algorithm reproduces always an identical

result, therefore its standard deviation is null; whereas in the float-based

implementation the last significant digit varies among the executions. . . 139

6.12 Relative error, 100 · ξfloat−based−ξnew algorithm

ξnew algorithm
for the parameters involved

in the shear-shear correlation function (ξ+, ξ−) between the float-based

implementation and the new algorithm for the CFHTLenS input file (106

galaxies), for: a) ξ+, and b) ξ−. 140

xxiii

LIST OF FIGURES

xxiv

List of Tables

3.1 Benchmark functions used in the study of the sensitiveness of evolution-

ary algorithms to the random number generator. 24

3.2 p-value for non-parametric hypothesis testing for each EA and fitness

function. 25

3.3 Results of the benchmark functions for diverse interchange patterns. For

each configuration (Dimension, Population size and number of Genera-

tions) and fitness function, the best exchange pattern is presented. The

percentage indicates when the interchange is activated, i.e. 20% means

4 interchanges: 20%, 40%, 60%, and 80%. 29

3.4 Number of best results in multipopulation PSO obtained for each con-

figuration for each interchange pattern. 30

3.5 Number of best results in multipopulation PSO obtained for each con-

figuration in function of the character of fitness function. 30

3.6 Results of benchmarks of the PSO variants (Dimension, Population size

and number of Generations) for the fitness functions f1, f2, f3, f4, f5

and f6 after 400 tries. 33

3.7 Results of benchmarks of the PSO variants (Dimension, Population size

and number of Generations) for the functions f7, f8, f9, f10 and f11 after

400 tries. 34

3.8 Best results of the PSO variants in relation with the dimension. 35

3.9 Best results of the PSO variants in relation with the swarm size. 35

3.10 Best results of the PSO variants in relation with the number of cycles. . 35

3.11 Best results of the PSO variants in relation with the behaviour of the

fitness function. 35

4.1 Mean Execution Time (10−6s) for transfer data between CPU and GPU

memories and kernel execution in Schwefel Problem 1.2 and Rosenbrock

function for dimensionalities 1,000 and 10,000; and 20 particles. 46

xxv

LIST OF TABLES

4.2 Mean Execution Time (10−6s) for one evaluation in CPU and in GPU

in Schwefel’s Problem 1.2 and Rosenbrock function for dimensionalities

1,000 and 10,000; and 20 particles. 46

4.3 Mean speed-up and standard deviation—after 15 tries per configuration—

in GTX295 and TESLA C2050 versus CPU codes for diverse number of

threads per block for the Schwefel’s Problem 1.2. 50

4.4 Mean execution time and standard deviation for Rosenbrock function

depending on data layout. 58

5.1 p-value from Wilcoxon signed-rank test for non-parametric hypothesis

testing for each evolutionary algorithm, galaxy and expansion degree. . 74

5.2 Best fitness (25 executions) for each galaxy and case. The numerical

results labelled with: random have been obtained with µ = CR = 0.5,

those labelled with optimized by using µ and CR optimized with 10 or

with 1,000 cycles. The numerical results without label correspond to the

cases where µ and CR have been optimized with 10 cycles and the runs

executed with 1,000 cycles. 84

5.3 Mean execution time of both tuner and optimizer for 10 and 1,000 cycles

in the optimizer. 85

5.4 Mean fitness and deviation standard for 1,000 cycles 10 individuals and

diverse mutation ratios when using only mutation operator over SSPs. . 88

5.5 Mean fitness and standard deviation for 1,000 cycles, 10 individuals and

diverse mutation ratios when using mutation operator over SSPs selec-

tion and over the coefficients. 90

5.6 Mean fitness and standard deviation for 1,000 cycles, 10 individuals and

diverse mutation ratios when using mutation operator over SSPs selec-

tion and DE over the coefficients. 91

5.7 Mean fitness and standard deviation from 103 to 107 cycles and 10 in-

dividuals, when using mutation operator over SSPs and DE over the

coefficients. 92

5.8 Centres of the two clusters created by k-means algorithm for cycles from

103 to 107 and 10 individuals, when using mutation operator over SSPs

selection and DE over the coefficients. 94

6.1 Mean execution time and speedup for CPU, GPU, Multi-GPU and OpenMP

implementations for the 2PACF. 105

6.2 Mean execution time and speedup for diverse numbers of cores in the

MPI implementation for the 2PACF. 106

xxvi

LIST OF TABLES

6.3 Mean execution time (s) for the single precision MPI-CUDA implemen-

tation of the 2PACF for 1, 2, 4, and 8 nodes for MICE 0.35 and MICE

0.55. 107

6.4 Mean execution time (ms), reduction of the execution time and speedup

in comparison with original code of the 2PACF and when implement-

ing all the positive strategies: the use of streams, reducing branching,

increment the occupancy and the data locality. 108

6.5 Numerical results of the production with 10 vectors and 10 cycles: iden-

tifier, percentages of the best solution achieved, fitness (execution time

of 2PACF in ms) of the best solution achieved, execution time of the op-

timizer run, mean and deviation standard of the fitness (execution time

of 2PACF in ms) after 12 runs for this particular percentages set, and

speedup (compared when using a single percentage, 10%). 113

6.6 Numerical results of the production with 20 vectors and 10 cycles: iden-

tifier, percentages of the best solution achieved, fitness (execution time

of 2PACF in ms) of the best solution achieved, and execution time of

the optimizer run. 113

6.7 Mean execution time (s) for original code and when applying L1 opti-

mization. 121

6.8 Mean execution time (s) for original code and for the previous improve-

ments plus when implementing concurrent computing. 122

6.9 Mean execution time (s) for original code and for the previous improve-

ments plus when implementing the loops reordered. 123

6.10 Mean execution time (s) for original code and for the previous improve-

ments plus when implementing vectorized loads. 124

6.11 Execution time and speedup (20 executions) for MPI-CUDA implemen-

tation and 1 million of galaxies of the shear-shear calculation for diverse

number of nodes. 125

6.12 Float-based implementation for the 3PACF: execution time and precision.129

6.13 Integer-based implementation: execution time and precision. 130

6.14 Unsigned-integer-based implementation: execution time and precision. . 130

6.15 Unsigned-long-long-integer-based implementation: execution time and

precision. 131

6.16 Profile of the implementations. 131

6.17 New algorithm implementation: execution time and precision. 133

6.18 Precision of the results for diverse number of thread blocks and two large

input sizes: 5k and 10k galaxies. 134

xxvii

LIST OF TABLES

xxviii

Chapter 1

Introduction

T
his thesis is organised in four parts toughly linked between them. The research is

articulated around these four parts as follows:

• Studies on evolutionary algorithms.

• Studies on GPGPU (for short GPU) computing.

• Evolutionary algorithms applied to astrophysics problems.

• Application of GPU computing to astrophysics problems.

These four parts are explained in the following exposition.

1.1 Motivation

During the last decades, most of the astronomical facilities, telescopes and detectors,

have been digitalized. This fact has driven to a notable improvement of the quality of

the information, as well as to a spectacular increment in the volume and the complexity

of available information for the researchers. This increment forces to face new challenges

associated with the management and the analysis of this information volume. Far from

being temporary, this effect will aggravate in the future due to the improvements in

the facilities resolution (space and time).

Concerning the previously mentioned information analysis processes, both paral-

lelism techniques, to improve the processing speed; and evolutionary computation, to

extract knowledge from large information volumes are widely applicable to problems

in the area of astronomy, astrophysics and cosmology. For this reason, in the next

years this scientific area will need some additional computational efforts to provide to

1

1. INTRODUCTION

the scientists of the necessary tools for the accomplishment of a high-quality scientific

production.

Two essential considerations emerge as reasons for this deluge of data. On the

one hand, new storage hardware has become high-capacity, allowing composing large

installations for storage purposes. On the other hand, the cost of this hardware has

reduced enough to consider keeping everything, without considering to sift the data.

The general objective of this research is to investigate the suitability of parallelism

techniques and evolutionary computing, as well as, to develop and optimize the codes

to support a high-quality scientific production in the area of astronomy, astrophysics

and cosmology.

In cosmology, the study of the large-scale structure of the Universe has suffered

from this data deluge. Until now, this kind of studies has been burden by a lack of

data and instrumental errors. However, in the last years, experiments such as: Dark

Energy Survey (DES), Physics of the Accelerating Universe (PAU), Kilo-Degree Survey

or Euclid are going to provide large collections of data.

The large-scale structure of the Universe can be studied by using the correlation

functions. It should be underlined that the computational complexity of correlation

functions, O(Nm), is related to the number of points in the sample, N , and the order

of correlation, m. In the past, the computational complexity of these analyses has

been reduced by introducing approximations in the spatial treatment of the points, i.e.

kd-trees. However, this kind of approximation might carry on losses in the accuracy of

the physical results.

In order to avoid a hard penalization in the processing time when calculating correla-

tion functions, the parallelism techniques are mandatory. To accomplish this reduction,

diverse technologies, such as: MPI or OpenMP, and computational resources, such as:

GPGPU cards, grid and clusters, have been tested.

Beside the increment of the volume, the scientific data are acquiring a high complex-

ity. In order to extract, the maximum of knowledge from these data sets, practitioners

are using tools coming from evolutionary computing, and data mining.

In particular, evolutionary algorithms such as: genetic algorithm, particle swarm

algorithm, firefly algorithm or differential evolution have been applied in this Thesis

to model the rotational curves of galaxies and to fit the galactic spectra with simple

stellar populations.

The rotation curve of a galaxy is the relationship between the rotational velocity

of stars as function of the radial distance to the galaxy centre. Its importance stems

from the discrepancy between the observed velocity of the stars and the Newtonian-

Keplerian prediction, in such way that masses derived from the rotational kinematics

2

1.2 Objectives

and gravitational laws do not match. This discrepancy might be explained by the

presence of dark matter. Therefore, the characterization of rotation curve in spiral

galaxies is a measure of the amount of dark matter in the galaxy.

The modelling of the galactic spectra with simple stellar populations gives an idea

of the age and the metallicity of the principal components of the galaxy. It is also

possible to determine the star formation and the enrichment histories of the galaxy or

of the galaxy region.

Besides the studies related with astrophysical and cosmological problems, explora-

tory studies have been necessary to pave this way. Among others, they include the

impact of the choice of the random number generator in the performance of the evo-

lutionary algorithms, or the most suitable layout for accelerating the evaluation of

complex functions on GPU.

1.2 Objectives

The main aim of this research is the development and the implementation of the most

suitable methodologies to improve the efficiency of the data analysis in the area of

astronomy, astrophysics and cosmology. This motivation is associated to the challenge

that supposes the increase in the complexity and the volume of the data accessible by

the practitioners.

In order to fulfil this general objective, and by depending on the particular problem

tackled, diverse techniques have been applied to find the most suitable one for the

problem. Concerning the techniques employed, parallel computing in diverse platforms:

distributed computing, accelerator cards and clusters have been applied. On the other

hand, evolutionary computing has been also applied to extract knowledge from large

and complex data sets. The main tasks developed are the following:

1. Study of the suitability of distributed computing paradigm for the resolution of

complex problems.

2. Study of the suitability of evolutionary algorithms for the resolution of problems

in the area of astronomy, astrophysics and cosmology.

3. Analysis of the sensitiveness of evolutionary algorithms to the choice of the ran-

dom number generator.

4. Study and implementation of metaheuristics techniques for fitting the rotational

curves of spiral galaxies, and for modelling low-resolution galaxy spectral energy

distribution.

3

1. INTRODUCTION

5. Review of the algorithms for the analysis of the spatial correlation of galaxies and

their shapes.

6. Development of parallel algorithms for the analysis of spatial distribution of galax-

ies, and for the analysis of the distortion of the shape of the galaxies due to the

presence of dark matter.

7. Evaluation of the results from computational and physical perspectives, and adap-

tation of the codes for its distribution.

In this Thesis, diverse areas of interest can be underlined:

1. From the computational point of view, two technical areas have been treated. On

the one hand, metaheuristics techniques have been employed to extract synthetic

knowledge from large data volumes. In some cases, previous exploratory studies

have been mandatory to survey the scope of the approach. On the other hand,

parallelism techniques are applied to reduce the execution time. As a result, more

efficient analyses than previously have been implemented.

2. From a scientific perspective, it has to be underlined that the developed codes

are going to be exploited in the analysis of data by international collaborations,

such as: Dark Energy Survey (DES), Physics of the Accelerating Universe (PAU);

or being promoted, such as Calar Alto Legacy Integral Field spectroscopy Area

survey (CALIFA). In relation to the previous state-of-the-art, the new implemen-

tations involve net improvements, such as: larger capacity to extract knowledge

from data volumes, and more efficiency for analysing without approximations

with affordable execution times.

3. Regarding an economic position, the improvement in the efficiency of the appli-

cations reverberates into further improvements in the exploitation of the compu-

tational platforms: more jobs per unit of time can be executed, as well as a lower

power consumption per application.

1.3 Organization of the Document

The organization of this Thesis is as follows: firstly a survey of the auxiliary methods

used are presented in chapter 2. They include the statistical tests used in the analysis,

data mining algorithms used for a concise presentation of the numerical results, or the

hardware used for testing the approaches. Next, in chapter 3, some studies related

with evolutionary computation are described. In this chapter, fundamental aspects

4

1.3 Organization of the Document

of the evolutionary algorithms are verified. Chapter 4 presents some practical studies

of the application of GPU computing. These studies aim to check the suitability of

diverse aspect of porting codes to GPU computing. The application of the evolutionary

algorithms to the astrophysical problems is presented in chapter 5. In chapter 6, the

parallelization of the correlation functions, two-point correlation function and shear-

shear correlation function are described. A modification incrementing the accuracy on

the most accepted strategy to construct histograms in GPU is also presented in chapter

6. Finally, chapter 7 summarizes the research carried out and outlines several future

works.

5

1. INTRODUCTION

6

Chapter 2

Methods and Hardware

2.1 Introduction

A
long this thesis, diverse methods have been used with very different objectives.

In most of the cases, the objective is to analyse the data in order to infer if two

or more numerical results are significantly different. In other cases, the objective of the

technique is to produce the best visual representation of the data.

Besides, the computational platforms and infrastructures employed in this thesis are

described. The information presented in this chapter allows understanding the scope

of the works performed and the improvements achieved.

2.2 Methods

2.2.1 Statistics

Statistical hypothesis testing is a fundamental method used at the data analysis stage

of a comparative experiment. For this comparison, two kind of tests can be used:

parametric and non-parametric. The main difference between parametric and non-

parametric tests rely on the assumption of the distribution underlying the sample data.

Given that the non-parametric tests do not require explicit conditions on the underlying

sample data, they are recommended when the statistical model of data is unknown

[37]. The Wilcoxon signed-rank test, Kruskal-Wallis test and the sign test belong to

the category of non-parametric tests.

The Kruskal-Wallis test [89] is one of such non-parametric tests, which is used to

compare three or more groups of sample data. For this test, the null hypothesis assumes

that the samples are from identical populations; whereas the alternative hypothesis

assumes that the samples come from different populations.

7

2. METHODS AND HARDWARE

When the null hypothesis in a multiple comparison (e.g. Kruskal-Wallis) is rejected,

it implies the use of a post-hoc test to determine which sample makes the difference.

The most typical post-hoc test is the Wilcoxon signed-rank test with the Bonferroni or

Holm correction [37].

The Wilcoxon signed-rank test also belongs to the non-parametric category. It is

a pairwise test that aims to detect significant differences between two sample means

[36, 37], for example the numerical results of two codes before and after a modification.

On the other hand, the Bonferroni correction aims to control the Family-Wise

Error Rate (FWER hereafter). FWER is the cumulative error when more than one

pairwise comparison (e.g. more than one Wilcoxon signed-rank test) is performed.

Therefore, when multiple pairwise comparisons are performed, Bonferroni correction

allows maintaining the control over the FWER.

In order to assess if one algorithm performs better than other when implementing

a modification, the sign test can be used. The sign test is also a non-parametric test.

For this test, the differences between both sets of results are calculated. Next, by

counting the number of plus signs or minus signs, it can be stated if one particular

implementation performs better than the other. For this scenario, the number of plus

signs or minus signs must be lower than or equal to a critical value depending on the

sample size.

2.2.2 Support Vector Machine

The use of Support Vector Machine (SVM hereafter) allows comprehensibly visualizing

complex data. Furthermore, it permits the knowledge extraction from large numerical

data sets. Through building a model with SVM, patterns in data can be inferred, being

the model more comprehensible than the numerical output [40]. If the data are linearly

separable, then LinearSVM is the simplest SVM classification model. In this Thesis,

the SVM models have been produced by using scikit-learn API [74].

SVM is useful for distinguish areas with different behaviours. In the context of

this Thesis, SVM has been employed in chapter 4 to show the configurations where a

particular layout is the most suitable for evaluating individuals on GPU or on CPU.

2.2.3 Random Number Generator

In this thesis, two random number generators (RNG hereafter) have been used. On the

one hand, most of the calculations have been performed by using a subroutine based

on Mersenne Twister [59].

8

2.2 Methods

This pseudorandom number generator holds a high quality passing the most strin-

gent tests of randomness. It was designed in 1997 by Matsumoto and Nishimura to

rectify many of the flaws found in older RNGs. Its name derives from the fact that

period length is chosen to be a Mersenne prime number.

The main features of the Mersenne Twister RNG are:

• It has a very long period of 219937 − 1 ≃ 106000. While a long period is not a

guarantee of quality in a random number generator, short periods —common in

many software packages— are problematic.

• It is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623 (Overlapping M-tuple

test).

• It passes numerous tests for statistical randomness, including the Diehard tests.

It passes most, but not all, of the even more stringent TestU01 Crush randomness

tests.

2.2.3.1 Sensitiveness to the RNG

On the other hand, in the study of the sensitiveness of the evolutionary algorithm to

the change of the RNG, the default RNG in the C and C++ languages is also employed,

the rand() function.

Many platforms have poor-quality versions of the rand() function, however GNU

platforms —glibc— implement a version with higher quality and broadly accepted as

good quality RNG.

The main features of the GCC RNG are:

• The implementation of glibc corresponds to the category of Linear Congruential

Generator [80].

• It has a period of ≃ 231 − 1. This period is accepted in general as long but it is

clearly shorter than the Mersenne Twister RNG.

Spite of the difference of period between both RNGs, the GNU rand() is accepted

as good quality RNG, being used in many scientific and technical works. The ques-

tion is if these differences affect to the final results of the optimization process when

implementing in evolutionary algorithms (chapter 3).

9

2. METHODS AND HARDWARE

2.3 Computational Infrastructure

Diverse computational infrastructures and hardware have been employed in this Thesis.

In all cases, the purpose was to find the most suitable one for the problem treated. A

brief description of them is presented in the following sections.

2.3.1 Grid

Distributed computing is nowadays a set of computational techniques that allow the

scientists to approach problems with a high computational cost [53], specially when the

units of simulation or analysis have not interaction among them. Diverse computational

models have been used in these circumstances: from grid computing to volunteer or

desktop computing. The grid computing allows the computers to be connected via

a special software called middleware. The middleware exports and handles all the

computer resources with the goal of providing a standard layer where the scientists can

run their simulations and analyses.

The first concepts and technologies about grid computing were expressed by Foster

and Kesselman in 1998 [49]. Before this, other publications started to express some

ideas about the orchestration of wide-area distributed resources [90]. Now the grid is a

consolidated discipline. However, the core components are under ongoing development

in order to fulfil the requirements requested by the users.

Grid computing provides a huge volume of geographically distributed, dynamic and

heterogeneous resources. The access to these resources is homogenized through the

middleware.

In this Thesis, diverse infrastructures (EGEE: Enabling Grids for E-sciencE, ES-

NGI: Spanish Grid Initiative) have been used, but in all cases, they implement the

middleware gLite and GridWay as metascheduler.

2.3.2 Cluster Computing

In this Thesis and for comparison purpose, MPI and OpenMP implementations of

diverse problems have be created and analysed. In these cases, the executions have

been performed in Euler facility at CIEMAT. This cluster is composed by 144 nodes

with two Quad-Core Xeon processors at 3.0 GHz with 8 GB at 667 MHz. The operating

system is Red Hat Linux Enterprise, and the file system is Lustre.

10

2.3 Computational Infrastructure

2.3.3 GPU Resources

2.3.3.1 GPU Hardware Used in the 2PACF

The GPUs employed in this study have been two Fermi cards: C2050 and C2075,

and a pre-Fermi card, the GTX295 —which contains two GPUs although only one is

employed. The Tesla C2050 is fully IEEE-754-2008-compliant supporting single and

double precision under the IEEE-754 standard. Otherwise, the GTX295 does not fully

support the standard IEEE-754.

On the other hand, the OMP implementation, created for comparison purpose, is

executed in a computer with two Intel Xeon X5570 processors at 2.93 GHz and 8 GB,

whereas the CPU implementation is executed in a computer with two Intel Xeon E5520

processors running at 2.27 GHz and 6 GB of main memory.

2.3.3.2 GPU Hardware Used in the Shear-Shear Correlation Calculation
and Other Works

The initial creation of the shear-shear correlation calculation code, all the optimization

process, as well as, the comparisons with the previous effort done, have been executed

on a machine with two Intel Xeon X5570 processors at 2.93 GHz and 8 GB of RAM,

and a C2075 NVIDIA GPU card. CUDA release 5.0 and compute capability 2.0 have

been used. The analysis and improvement of the precision of the histogram calculation

on GPU have been also done by using this hardware.

Besides, the works in the searching of the most suitable data layout for accelerating

the evaluation of non-separable functions has been executed in this facility.

On the other hand, the numerical experiments of the MPI-CUDA implementation

of the shear-shear correlation calculation have been executed on a multi-core system

at CETA-CIEMAT. The system is made up of two Quad Core Intel Xeon at 2.53 GHz

with 12 physical cores and 24 GB of DDR3 RAM memory, which uses a motherboard

Supermicro X8DTT-H and it is mounted on a bullx R424-E2. This node also has two

M2075 GPUs with 448 CUDA cores and 6GB (5.375 GB with ECC enabled) of memory

each one.

2.3.3.3 Overview of GPU Architecture and Programming Model

During the last two decades the semiconductor industry has followed two alternative

paths to increase the performance of its products. On the one hand, the number of

cores has grown evolving from a single core processor to two-core processor, four-core,

etc. This has generated the multi-core architecture. On the other hand, the many-core

11

2. METHODS AND HARDWARE

architecture follows a different strategy by implementing many small cores to profit from

highly-parallel problems. NVIDIA GPU is an example of this kind of architecture.

The main differences between both types of architectures emerge from the purpose

for which they are designed. Cores in multi-core architecture have to deal with a wide

portfolio of sequential general-purpose codes. On the contrary, the many-core architec-

ture comes form game industry where a massive number of floating-point calculations

per time unit is required.

Scientific computing might benefit from this high capacity for simulation and anal-

ysis. For this purpose NVIDIA introduced the CUDA (Compute Unified Device Ar-

chitecture) programming model. CUDA can be seen as a set of C extensions to handle

code on GPU. A CUDA code embodies two differentiated parts: the sequential code

which be executed in the CPU and the parallel code which be executed in the GPU.

This piece of the code is termed the kernel. The compiler separates the two parts

during the compilation.

From the architecture point-of-view, a GPU is composed of an array of highly-

threaded streaming multiprocessors (SMs). Each SM is in turn composed of several

streaming processors (SPs) which share control logic and instruction cache and are

able to support many threads. This architecture is specially recommendable for SIMD1

problems.

Concerning the data storage, the architecture implements diverse types of memories

covering a wide range of capacities, latencies and bandwidths. Global memory is the

main memory of the GPU card. Unfortunately it also has the lowest bandwidth and

the largest latency. Data stored in global memory is accessible by all threads on the

card. The register has the highest bandwidth and the lowest latency but its size is

smaller. Registers are tightly bound to thread so that data in the registers are only

accessible by the corresponding thread. A third type of memory is the termed shared

memory. Regarding the latency and the bandwidth it is an intermediate case between

the two previous types. Another difference is that it is accessible by all the threads

belonging to a block of threads2.

In spite of the fact that a CUDA kernel is executed correctly on any CUDA device,

its performance will differ depending on the particular architecture and their code adap-

tations. For this reason it is necessary to know the particularities of the architecture

to profit from the capabilities offered by the hardware.

In NVIDIA Tesla architectures each Streaming Multiprocessor (SM) had only 16k

registers whereas in Fermi architecture this on-chip memory has grown up to 32k.

1Single Instruction, Multiple Data
2A block of threads is a logical group of threads which are executed on an SM.

12

2.3 Computational Infrastructure

Another feature that has been incremented in the Fermi architecture is the maximum

number of threads per block from 512 to 1024.

NVIDIA Fermi architectures introduces a two-level transparent cache-memory hi-

erarchy. Each SM has 64 KB of on-chip memory distributed between shared memory

and L1 cache memory. Users can select diverse configurations of shared memory and

L1.

When implementing coalesced or non-coalesced access to global memory the mem-

ory transaction segment size becomes an important factor in the final performance. In

Tesla architecture the available memory transaction segment sizes are: 32, 64 and 128

bytes. The selected value depends on the amount of memory needed and the memory

access pattern. The selection is automatic in order to avoid wasting bandwidth.

In the Fermi architecture the memory transaction segment size follows a different

rule. When L1 cache memory is enabled, the hardware always issues transactions of

128 bytes (cache-line size); otherwise, 32 byte transactions are issued.

13

2. METHODS AND HARDWARE

14

Chapter 3

Evolutionary Algorithms

3.1 Introduction

N
owadays, practitioners have a wide set of tools in order to afford their research

activity: parallel techniques, evolutionary algorithms (EA hereafter), or data

mining. The use of these techniques enhances the quality of the scientific production.

As far as the treated problems become more and more complex, tools from different

scientific disciplines are becoming mandatory and their interconnection necessary to

face the analysis of data.

Besides the applied studies, exploratory studies are necessary to understand the

scope and the impact of the techniques. For example, in this chapter some studies re-

lated to the efficiency of EAs or the impact of the choice of the RNG in the performance

of the EAs are presented.

3.2 Related Work

3.2.1 Related Work for the Sensitiveness of Evolutionary Algorithms

to the Random Number Generator

Many works have examined diverse aspects of the impact of the RNG over the final

performance of EAs. However, relevant differences between these previous works and

the study performed in this thesis have been found.

The first works in this area [61, 63] examined the impact of the RNG choice on

the performance of Genetic Algorithm (GA), while applying to a collection of diverse

well-known GA test functions. In this study, no statistical evidence of impact over

the GA performance due to the RNG quality is found. However, the coarse-grained

statistical analysis employed puts in quarantine the conclusions attained.

15

3. EVOLUTIONARY ALGORITHMS

In a further study using finer statistics [62], no correlation between goodness on the

RNG tests —Diehard suite— and good performance by the GA is obtained.

Other paper [12] has studied the sensitiveness of GA to the choice of RNG focusing

on the components which are most affected by the RNG. The work presents an ablation

experiment using two RNG and the true random number from an atmospheric noise

source. The experiments show that the RNG used to initialize the population has a

critical impact over the final performance; whereas the RNG used as input to other

operations —crossover and mutation— do not significantly affect to the performance.

3.2.2 Related Work for the Analysis of Behaviour of Evolutionary

Algorithms: Particle Swarm Algorithm as Case Study

In the study of the behaviour of the evolutionary algorithms and specially the behaviour

of Particle Swarm Optimizer (PSO), most of the previous works are related with PSO

itself [27, 48], its weaknesses [22, 72], and its variants: Inertial Weight [27] (IWPSO),

Particle Swarm Optimization with Massive Extinction [101] (PSOME), Fitness Dis-

tance Ratio Based Particle Swarm Optimization [75] (FDRPSO), Dissipative Particle

Swarm Optimization [31] (DPSO), A Diversity-Guide Particle Swarm Optimizer [83]

(ARPSO), and Mean Particle Swarm Optimization [26] (MeanPSO).

However, previous publications with the aspects treated in this chapter: multipop-

ulation PSO and benchmarking of PSO variants have not been found.

3.2.3 Related Work for the Application of Evolutionary Algorithms

to the Resolution of Complex Problems: Bateman Conjecture

as Case Study

No previous studies of the conjecture of Bateman have been found in the scientific

literature. Only the scientific spreading book [98] refers to it.

3.3 Computational Platforms for Analysing Evolutionary

Algorithms

In this section, some studies about the suitability of diverse computational platforms

for scientific computing, and specially for analysing EAs, are performed.

3.3.1 Taxonomy of Grid Applications

The taxonomies provide useful information about the elements corresponding to each

category, independently of the object classified. In this section, a revision of the tax-

onomies used for grid applications is presented. Although the categories composing

16

3.3 Computational Platforms for Analysing Evolutionary Algorithms

the taxonomies presented in this section are not perfectly independent, nor well settled

in the community; they allow extracting important information from the application

before its adaptation.

3.3.1.1 Taxonomy Based on the Application Type

One possible classification of the grid applications is based on their primary driving

reasons for using the grid [8]. In the following, the three categories of this taxonomy

are presented:

Megacomputing applications. These are problems that can be divided into a large

number of independent parts. Each part is completely independent of the others.

These problems are called embarrassingly parallel. In this category, it comes many

problems biochemistry, high energy physics or fusion. All the applications based

on Montecarlo simulations fall in this category.

Finally, within this category they are also applications referred to as sweeping

parameters (parameter sweep). In these problems, the application is executed

multiples times with different initial conditions or configurations.

Seamless data access applications. These are applications which use the grid to

access and to integrate the use of multiples data sets and computational resources.

In these cases, the grid is used for its ability to store large volume data and

simultaneously to serve to a community around the world.

Today, excellent examples of this kind of applications are showed in the high

energy physics and astronomy communities. Moreover, probably the evolution of

the grid is going to attract many users communities with similar problems.

Loosely coupled applications. This case is functionally compound applications with

interaction between the different parts of them. For example, applications where

the outputs of some parts are used as input to other parts. As final result, a set

of codes handles some information which suffers diverse manipulations.

This kind of applications is the most complex of the three categories and it is

usually produced by scientific communities hardly exploiting the grid paradigm.

They involve a strong implication of the community on the grid as fundamental

computing model for their scientific activity.

In the research groups, a natural evolution from the megacomputing applications to

seamless data access applications, and finally to loosely coupled applications is foreseen.

17

3. EVOLUTIONARY ALGORITHMS

Usually the first contact of the research groups with the grid is articulated around the

transposition of a problem of the megacomputing applications category. If the scien-

tific area involved allows merging the needs and the interests of different groups, a

transition towards seamless data access applications through the sharing of the data

of the collaboration is envisaged. Finally, the collaboration might need complex visu-

alisation, recovering data and simulation applications, evolving toward loosely coupled

applications.

3.3.1.2 Extended Flynn Taxonomy

An alternative classification is to extend the taxonomy of Flynn [33] to the grid applica-

tions. Originally the taxonomy of Flynn is designed for parallel applications, however,

it can be used as baseline to grid applications. From the original definitions, the con-

cept Instruction has been changed by the concept Program; and the concept Data by

the concept File.

SPSF. Single File Single Program. This case corresponds to applications with a

single executable which produces a single file. An example of this kind of appli-

cation is a montecarlo code.

SPMF. Single Program Multiple Files. In this case, a single application produces

several output files. An example of this category is the production of some new

images from a raw image.

MPSF. Multiple Programs Single File. In this case, the application is composed

by more than one executable. These executables are applied consecutively to a

file. As a consequence a work-flow is created. An example of this kind of applica-

tion is a work-flow which manipulates an image applying diverse transformations

in an established order.

MPMF. Multiple Programs Multiple Files. This case corresponds to the appli-

cation of diverse executables, producing multiple output files. An example of this

category could be a complex work-flow that creates some output files.

As general rule, as much as the application falls in the latest categories of this

taxonomy, less suitable will be for the grid paradigm.

18

3.3 Computational Platforms for Analysing Evolutionary Algorithms

3.3.1.3 Scientific Community Taxonomy

An in-depth analysis of the applications running on grid shows the existence of a gap

between the applications emerging from scientific communities well established around

an international collaboration exploiting a scientific instrument (i.e. detector, satellite,

sensor network); and the applications arising from independent small research groups.

Unlike the taxonomies presented in the previous sections, where the criteria are exclu-

sively technological; in this case, the criterion is environmental one.

In the case of a scientific community, there is a separation of roles between the

developers of the applications and the users; while in the case of a independent group,

all functions are overlapped.

Some of the features of each taxonomy are:

Applications supported by an International Collaboration. Examples of this ca-

tegory are the applications coming from the major international collaborations,

mainly in high energy physics and astronomy. With the advent of international

collaborations exploiting proteomic and genetic databases or digital repositories,

it will produce a strong increase of cases in this category.

This category has the following features:

• Integration of different types of grid applications, including: portals, work-

flows, remote access to data, data handling, analysis, etc.

• Cooperative use of applications faced to more individual way to exploit the

applications supported by an Independent Group.

• Separation of responsibilities between developers and users.

• Permanent operation running and production system on grid.

• The grid is used for computing and distributed storage, and in some cases

for remote accessing to scientific instruments.

• High volume of computational resources.

• World wide geographic scope.

Applications supported by an Independent Group. This category includes a my-

riad of applications coming from research groups. Besides, the applications com-

ing from small communities in the process of establishing an international collab-

oration might be included in this category.

This category has the following features:

19

3. EVOLUTIONARY ALGORITHMS

• There is not integration of the applications.

• Individual use of applications.

• No separation of responsibilities between developers and users.

• Production in campaigns.

• The grid is normally only used for computing.

• Reduced volume of computational resources.

• Local geographic scope.

Both categories exposed in this section are suitable for the grid. The main difference

will appear with the long term sustainability of the activity. The International Collab-

oration will sacrifice any point in order to fill the computational requirements imposed

by the collaboration. Whereas, in the case of Independent Group there is an aspect

of profiting technological opportunity. The technology is verified with some previous

problems treated by the group.

3.3.1.4 Topological Taxonomy

Considering a grid application as a collection of executables to solve a scientific problem,

then the topological structure of the executables can serve as a criterion for a taxonomy

[32]. Oppositely to the previous taxonomies, this one will be only applicable for grid

applications composed of several executables.

Under this taxonomy, the applications are classified in three categories:

Sequential Topology. In this category, the application is a collection of jobs that are

sequentially executed in the same or different nodes of the grid infrastructure.

The output serves as the input to the next job in the sequence.

In this case, the advantage of the execution of such applications in a grid envi-

ronment is the ability to use the resources available on line as soon as they are

released. Although the execution is sequential, not all the tasks which make up

the application have to run on a single node of the grid. This strategy improves

the scalability of the application by using as many resources as they are available.

Parallel Topology. In this category, the main body of the application is composed

by diverse jobs which run in parallel on different nodes. Such applications are

suitable for a grid environment, provided that an appropriate policy for booking

resources is implemented.

20

3.3 Computational Platforms for Analysing Evolutionary Algorithms

Network Topology. This is the most complex case, in which the application is com-

posed of some jobs which are executed in parallel and others which are sequentially

executed. The execution of these applications in grid implies the existence of an

efficient way of handling the synchronisation of the jobs and the transference of

data files among them.

Due to the nature of the grid: geographical dispersion and heterogeneity, the ap-

plications belonging to the network topology category will be less suitable than the

applications of the sequential topology category.

3.3.2 Volunteer Computing

Many regions around the world have low scientific funds. In these regions, the use of free

software and volunteer computing is a very interesting option for scientific computing

and for developing important research.

Volunteer computing is a variant of distributed computing which uses the computa-

tional resources of volunteers. They share their CPU-cycles with the projects that they

are affiliated. In order to coordinate the download of the code project and the input

data, the upload of the results, and the recollection of the statistic of use, a piece of

software acting as middleware is necessary. The most popular middleware in volunteer

computing is BOINC [4] (Berkeley Open Infrastructure for Network Computing).

For testing the suitability of this computational platform for scientific computing,

three applications are deployed on the distributed infrastructure. This work was de-

veloped in collaboration with the ARCO research group for the Radio Network Design

problem, the CAPI Research Group for the Microcalcification Clusters (MCCs) classi-

fication problem —both in the University of Extremadura—; and the CETA-CIEMAT

for the virtualization problem.

The first example focuses on the telecommunications area. Many of the problems

found in this area can be formulated as optimization tasks. In this case, the problem is

the Radio Network Design (RND). This is an important problem in mobile telecommu-

nications (for example in mobile/cellular technology), being also relevant in the rising

area of sensor networks. When a set of geographically-dispersed terminals needs to

be covered by transmission antennas (also called base transceiver stations -BTS-), the

key subject will be to minimize the number and localizations of those antennas and to

cover the biggest possible area. This is the RND, that is an NP-hard problem, and for

this reason its resolution by means of volunteer computing is very appropriate.

21

3. EVOLUTIONARY ALGORITHMS

The second research line is the optimization of neural networks classifiers by means

of feature selection on input space, using Genetic Algorithms (GA). In many classifica-

tion problems after the feature extraction step, the results can be improved by doing

a feature selection step (so avoid the curse of dimensionality problem). However, the

feature selection step is a very hard optimization problem with high computational

requirements. In the past, we successfully applied GA for this selection in the cloud

cover classification problem, using a 45 node Beowulf cluster. Now, we intend to apply

this technique to Microcalcification Clusters (MCCs) classification in mammograms, for

breast cancer diagnosis. This problem is considerably more complex than the former,

and using only the cluster could be not enough. For this reason, the use of volunteer

computing to solve it is proposed.

Finally, the third problem focuses on virtualization, where the goal is to provide

a framework rapidly deployable to profit the best use of resources. Being the CETA-

CIEMAT a centre devoted to grid computing, scenarios of under-use of resources ap-

pear. In these scenarios, to have the possibility to switch quickly the ”flavour” of the

machines, changing the real use dynamically, increases the maximum performance to

the computers. As a result, BOINC clients completely virtualized has been successful

employed in several projects, including these previously cited.

3.4 Sensitiveness of Evolutionary Algorithms to the Ran-

dom Number Generator

There are numerous papers published every year in optimisation problems based on

EAs which implement diverse high-quality RNGs. However, it is difficult to ascertain

the role played by the RNGs in the final results. The intent of this section is to figure

out the role of RNG in the final performance, and to assess if this element has any

impact over the results obtained.

EAs techniques rely heavily on the use of RNG. From initial population generation,

through the specific canonical operators applied to create new temporary population,

the use of randomness is pervasive through EAs. Therefore, it is reasonable to wonder

how RNG quality affects EAs performance.

In order to analyse the impact of the RNG over the performance of EA, two RNGs

(Mersenne Twister and GCC rand()) (section 2.2.3) have been used to test their impact

in the final performance of four EAs: Particle Swarm Algorithm (PSO), Differential

Evolution (DE), Genetic Algorithm (GA), and Firefly Algorithm (FA). The two RNGs

have been selected based on two following criteria:

22

3.4 Sensitiveness of Evolutionary Algorithms to the Random Number
Generator

• The RNG have to be frequently used in research papers.

• The RNG have to be considered as high-quality RNG.

In order to test our hypothesis about the impact of the RNG in the performance of

these four EAs, a large number of experiments have to be executed to produce a high

statistic. Besides, grid computing is employed to support the computational activity.

This paradigm has made proof of be able to cover the requirements of a lot of scientific

communities [49]. The computing capabilities delivered by this paradigm have increased

the generation of new science. For this reason, a platform of grid computing (ES-NGI,

section 2.3.1) has been selected for the present work in order to provide the necessary

resources to produce the large data sets required.

3.4.1 Production Setup

The study is conducted using a set of benchmark functions (Table 3.1). These functions

are selected in order that the set has a mixture of multimodal and monomodal, separable

and non-separable functions. They have been extracted or inspired from CEC 2010

and CEC 2008 Special Sessions and Competition on Large-Scale Global Optimization;

as well as other papers benchmarking EAs.

Regarding the features of the selected functions, they are as diverse as possible

in order to cope with different scenarios of the RNG and EA. The functions termed

multimodal present diverse minima in the interval of the variables, whereas the functions

termed monomodal present only one minimum. Concerning the separability of the

variables, if the variables involved in a function are independent of each other, the

function is termed separable, otherwise non-separable.

In order to have a solid statistic, a total of 104 tries of each benchmark function

has been executed. In this production, the powerful machinery of the grid was used to

support the computational activity.

To manage the complexity of the problem—involving diverse benchmark functions—

the grid jobs are created with 500 tries of a particular configuration. This structure

assures the optimization of the execution time for the grid environment. Several runs

are executed to reach the statistical relevance desired.

Each job is composed by a shell-script that handles the execution, and a tarball

containing the source code (C++) of the program and the configuration files. When

the job arrives to the Worker Node, it executes the instructions of the shell-script: to

roll out the tarball, to compile the source code and to execute the 500 tries of the

configuration for the benchmark function, and finally to create a tarball of the results

files. When finishing the job, it recuperates the results tarball.

23

3
.
E
V
O
L
U
T
IO

N
A
R
Y

A
L
G
O
R
IT

H
M

S

Table 3.1: Benchmark functions used in the study of the sensitiveness of evolutionary algorithms to the random number generator.

Expression Optimum Interval Characteristics

f1 =
∑D

i=1[sin(xi) + sin(2·xi

3)] ≃ −1.21598 ·D [3, 13] Multimodal Separable

f2 =
∑D−1

i=1 [sin(xi · xi+1) + sin(2·xi·xi+1

3)] −2 ·D + 2 [3, 13] Multimodal Full-non-separable

f3 =
∑D

i=1[(xi + 0.5)2] 0 [-100, 100] Monomodal Separable

f4 =
∑D

i=1[(xi)
2 − 10 · cos(2πxi) + 10] 0 [-5.12, 5.12] Monomodal Separable

f5 =
∑D

i=1[(xi)
2] 0 [-5.12, 5.12] Monomodal Separable

f6 =
∑D

i=1[xi · sin(10 · π · xi)] ≃ −1.95 ·D [-1, 2] Multimodal Separable

f7 = 20 + 20 · exp(−20 · exp(−0.2
√∑

D
i=1

x2
i

D
))− exp(

∑D

i=1
cos(2πxi)

D
) 0 [-30, 30] Monomodal Separable

f8 = 418.9828 ·D −∑D

i=1[xi · sin(
√

|xi|)] 0 [-500, 500] Multimodal Separable

f9 =
∑D−1

i=1 [100 · (xi+1 − x2
i)

2 + (xi − 1)2] 0 [-5.12, 5.12] Monomodal Full-non-separable

f10 =
∑D

i=1[i · (xi)
2] 0 [-5.12, 5.12] Monomodal Separable

f11 =
∑D

i=1[(xi)
2] + [

∑D

i=1(
i
2 · xi)]

2 + [
∑D

i=1(
i
2 · xi)]

4 0 [-5.12, 5.12] Monomodal Separable

24

3.4 Sensitiveness of Evolutionary Algorithms to the Random Number
Generator

Table 3.2: p-value for non-parametric hypothesis testing for each EA and fitness function.

Function PSO DE GA FA

f1 1.79 · 10−6 nan 8.31 · 10−11 0.034

f2 0.572 0.0 0.0 0.574

f3 3.40 · 10−6 0.0 0.292 0.885

f4 0.783 0.0 0.0 0.834

f5 0.816 0.0 2.78 · 10−10 5.89 · 10−6

f6 10−4 2.62 · 10−12 0.0 0.013

f7 0.222 0.0 0.0 0.558

f8 0.130 0.0 0.0 0.522

f9 0.640 0.0 0.003 0.014

f10 0.013 0.0 0.646 0.355

f11 2 · 10−4 0.0 0.002 0.135

Taking into account the total number of fitness functions, algorithms and runs, the

whole production involved 1,760 jobs and 880,000 tries.

The configuration is selected in order to have the maximum number of calls to

the corresponding RNG. Thus, the configuration involves 10,000 cycles, 100 parti-

cles/individuals as population size and a dimensionality of 100 for all fitness functions.

The use of this configuration, independently of the EA employed, involves at least 108

calls to the RNG by execution, and 1012 calls by benchmark function.

3.4.2 Results and Analysis

The numerical results obtained with each RNG are analysed with the Wilcoxon signed-

rank test. In Table 3.2, the p-value of Wilcoxon signed-rank test for each EA and

fitness function is presented. In our study, the analysis of the sensitiveness of the EAs

is based on these values.

As null hypothesis, the equal performance of both RNG is stated. The acceptance

or rejection of the null hypothesis for a confidence level of 95% (p-value under 0.05), is

based on whether the p-value at Table 3.2 is higher (acceptance) or lower (rejection)

than α = 0.05.

As it can be observed (Table 3.2), the null hypothesis (H0 : µ1 = µ2) can be rejected

in all cases for DE. Hence, DE algorithm is considered as very sensitive to the choice

of RNG, producing results significantly different in relation to the RNG implemented.

For f1 the p-value can not be obtained due to all results for both RNGs are equal,

being not possible to perform the Wilcoxon signed-rank test.

25

3. EVOLUTIONARY ALGORITHMS

For PSO in 5 tests (f1, f3, f6, f10, f11) the null hypothesis can be rejected; otherwise

in 6 cases the null hypothesis can not be rejected (f2, f4, f5, f7, f8, f9). Consequently,

PSO shows a low sensitiveness to the choice of the RNG. Furthermore for FA, the

p-values obtained allow rejecting the null hypothesis in 4 cases (f1, f5, f6, f9), failing

to reject in the 7 remaining cases; showing the lowest sensitiveness of the four EAs

studied.

Between these two extreme cases —DE and FA— the p-values obtained for GA

allow rejecting the null hypothesis in 9 cases, and only in 2 cases (f3 and f10) the null

hypothesis can not be rejected.

Moreover, in relation to the main focus of this work, most of the cases analysed point

that the use of a particular RNG affects to the final performance. This sensitiveness

is particularly more explicit in DE, where for all cases the null hypothesis is rejected,

than in PSO, where only in 5 cases, or FA, where only in 4 cases the null hypothesis

can be rejected.

The analysis of these results allows building a scale of sensitiveness for the EAs

tested: DE > GA > PSO > FA.

Based on the non-parametric analysis performed in this section, it can be concluded

that the choice of the RNG affects to the final performance of the EA tested, although

the level of sensitiveness shown is different among them. Unfortunately, this analysis

does not allow establishing conclusions about the best performance of the EAs with

the use of a particular RNG.

3.5 Analysis of Behaviour of Evolutionary Algorithms:

Particle Swarm Algorithm as Case Study

3.5.1 Performance Improvement in Multipopulation Particle Swarm

Algorithm

Particle Swarm Optimization (PSO) has demonstrated to be an efficient and fast opti-

mizer (Eqs. 3.1, 3.2), with a wide applicability to very diverse scientific and technical

problems. In spite of this efficiency, some disadvantages have appeared, mainly the

premature convergence, as well as, the stagnation of the fitness improvement.

vid(t+ δt)← vid(t)+ c1 ·Rand() · (xlocalbestid −xid)+ c2 ·Rand() · (xglobalbestid −xid) (3.1)

xid(t+ δt)← xid(t) + vid (3.2)

26

3.5 Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm
Algorithm as Case Study

(a) An individual randomly
selected is copied to the
neighbour population.

(b) The best individual of
the population is copied to
the neighbour population.

(c) The best individual of
all the populations is copied
to the other populations.

Figure 3.1: Schema of the three exchange patterns employed in this study.

The use of more than one population, with periodic interchange of the best individ-

uals, is a technique widely employed in diverse EAs. The multipopulation technique

has proved to be excellent to accelerate the convergence and to reduce the stagnation.

However, in order to maximize the advantage of this approach, the individuals inter-

changed and the moment of the action have to be carefully selected. Otherwise, if an

incorrect moment is selected, not major advantage will be given to the algorithm.

Two factors seem to be desirable for the individuals interchanged. First of all,

they should represent as good solutions as the best individuals of the population where

they are introduced. Second of all, they ought to increase the genetic diversity of the

population.

In spite of the excellent performance of the original PSO, multitude of variants,

improvements or alternatives have been proposed [16]. However, a complete character-

ization of the possible improvements on PSO requires a study of the behaviour of PSO

in relation to a multipopulation approach.

The benchmark functions selected are presented in Table 3.1 as well as their char-

acteristics. For supporting the production, the grid infrastructure described at section

2.3.1 has been employed.

3.5.1.1 Multipopulation Modifications in PSO

In order to characterize the capacity of the multipopulation approach to improve the

performance, an in-depth study has been performed using a catalogue of configurations

and fitness functions (Table 3.1). In all cases, three populations are implemented. This

includes:

• Which individual is interchanged?

– In the first configuration, an individual randomly selected is copied to the

neighbour population (Fig. 3.1(a)). This configuration should not produce

27

EA/figures/psoex-1.eps
EA/figures/psoex-2.eps
EA/figures/psoex-3.eps

3. EVOLUTIONARY ALGORITHMS

better solutions that the equivalent –swarm size– configuration for a sin-

gle population. A priory, it should represent the worst result of the three

configurations.

– In the second case, the best individual of one population is copied to the

next population establishing a circular topology (Fig. 3.1(b)). A net im-

provement, in relation with the previous configuration, is expected.

– In the third case, the best individual of any population is copied to the other

populations (Fig. 3.1(c)). For this configuration, a net improvement is also

expected. In relation to the previous configuration it is not obvious if the

minor genetic diversity introduces a premature convergence.

• And, when is it more profitable to copy individuals from its original population

to other population? For this characteristic three patterns have been established.

when these percentages of cycles are reached, then the interchange is activated.

– 33% - 66%

– 25% - 50% - 75%

– 20% - 40% - 60% - 80%

3.5.1.2 Results and Analysis

The results of the study are presented at Table 3.3. In this table, the configuration

which obtains the best result for each fitness function is presented. If more than one

configuration produces the same best result, none is represented.

The analysis of Table 3.3 shows a dominance of interchange patterns where best

individuals are involved. Furthermore, a tendency toward more number of interchanges,

20%, is also remarked. This case corresponds to an activation of the interchange every

20% of cycles: 20%, 40%, 60%, 80%. This tendency will be more clearly drawn at Table

3.4. Spite of this trend, a certain dispersion of best results is observed. Even the worst

a priory configuration (individuals randomly selected) obtains several best results.

Configurations, where only individuals randomly selected are interchanged, have

the capacity to produce best results. This fact underlines the relevance of the genetic

diversity of the individuals in the swarm. Stagnation in the convergence process is

frequently due to a lack of genetically different individuals, able to explore areas far

away of the local minima. Therefore, the individuals randomly selected provide genetic

richness to the target swarm avoiding stagnation.

At Table 3.4, a digest of the data of Table 3.3 is shown. The analysis of data exposes

that the performance of any interchange pattern involving best individuals has better

28

3
.5

A
n
a
ly
sis

o
f
B
e
h
a
v
io
u
r
o
f
E
v
o
lu
tio

n
a
ry

A
lg
o
rith

m
s:

P
a
rtic

le
S
w
a
rm

A
lg
o
rith

m
a
s
C
a
se

S
tu

d
y

Table 3.3: Results of the benchmark functions for diverse interchange patterns. For each configuration (Dimension, Population
size and number of Generations) and fitness function, the best exchange pattern is presented. The percentage indicates when the
interchange is activated, i.e. 20% means 4 interchanges: 20%, 40%, 60%, and 80%.

D P G
Random Circular Best Global Best

33% 25% 20% 33% 25% 20% 33% 25% 20%

100

10
102 f8 f7 f6 f1 f9

f3 f4
f5 f10 f11 f2

103 f11 f7 f8 f1 f2 f3 f4 f6 f10 f9 f5
104 f5 f9 f8 f3 f11 f4 f10 f2 f6

100
102 f8 f9 f1 f5 f4 f11 f10 f2 f3 f6
103 f8 f11 f4 f7 f2 f3 f10 f9 f5 f6
104 f11 f4 f9 f2 f3 f5 f6 f10

50

10
102 f8 f5 f6 f10 f7 f9 f11 f1 f3 f4 f2
103 f7 f8 f6 f2 f11 f1 f3 f10 f9 f4 f5
104 f11 f4 f2 f9 f5 f6 f3 f10

100
102 f9 f4 f11 f8 f2 f1 f6 f3 f5 f10
103 f2 f10 f4 f5 f11 f3 f6 f9
104 f11 f6 f3 f9 f10 f4 f2 f5

20

10
102 f9 f11 f5 f3 f4 f6 f2 f1 f8 f10
103 f2 f5 f9 f3 f10 f6 f4 f11

104 f11 f3 f2 f4

f5 f6
f8 f9 f10

100
102 f4 f8 f10 f3 f6 f9 f11 f1 f2 f5
103 f8 f3 f9 f11 f2 f5 f4 f10 f6
104 f10 f5 f8 f9 f11 f3 f4

10

10
102 f5 f11 f8 f9 f2 f3 f4 f6 f1 f7 f10
103 f4 f3 f5 f8 f9 f11 f2 f6 f10
104 f5 f4 f2 f8 f9 f3 f6 f10 f11

100
102 f9 f3 f4 f10 f8 f5 f11 f1 f6 f2
103 f2 f8 f4 f5 f9 f11 f3 f6 f10
104 f9 f10 f4 f2 f3 f11 f5 f8

29

3. EVOLUTIONARY ALGORITHMS

Table 3.4: Number of best results in multipopulation PSO obtained for each configuration
for each interchange pattern.

Random Circular Best Global Best
33% 8 27 14 49
25% 14 23 41 78
20% 12 43 42 97

34 93 97 Totals

Table 3.5: Number of best results in multipopulation PSO obtained for each configuration
in function of the character of fitness function.

Multimodal functions Monomodal functions

Random
Circular
Best

Global
Best Random

Circular
Best

Global
Best

11 3 6 2 33% 5 21 12 38

30 2 12 16 25% 12 11 25 48

33 4 10 19 20% 8 33 23 64

Totals 9 28 37 25 65 60 Totals

performance than patterns involving only randomly selected individuals. This consider-

ation is obvious, however, the number of best results for randomly selected individuals

are not negligible in relation to the other two selection modes. As a consequence, the

importance of the genetic diversity is underlined.

Taking into consideration this argument, it is foreseeable that an algorithm inter-

changing best individuals and other randomly selected ought to reach higher level of

convergence toward good solutions in relation to other interchanging only best solu-

tions.

Regarding the number of exchanges, the Table 3.4 shows an improvement of the

best results as much as the number of interchanges grows. However, this trend seems

to have an asymptotic limit. The number of best results obtained augments from 25%

to 20% more smoothly than from 33% to 25%.

At Table 3.5 an alternative digest of Table 3.3 is presented. In this case the analysis

is performed in function of the character of fitness function: multimodal or monomodal.

Similar considerations to those expressed in the analysis of the Table 3.4 can be applied

to the analysis of this table.

30

3.5 Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm
Algorithm as Case Study

3.5.2 Study of Performance of Particle Swarm Optimization Algo-

rithms Using Grid Computing

The PSO is an efficient and fast optimizer. In spite of the efficiency demonstrated by

the PSO, also some disadvantages have appeared, mainly the premature convergence

which prevents the finding of optimal solutions.

Generally, when proposing enhancements to PSO, the original authors execute some

benchmarks. These benchmarks include the most profitable configuration and function

for the enhancements proposed, being, in general, a reduced number of tests. Besides,

the benchmarks have been executed with different set of functions and configuration;

and usually only between the standard algorithm and the new one. This impedes

checking the results among the enhancements proposed.

In this section a survey of the performance of PSO variants is presented. For

supporting the production, the grid infrastructure described at section 2.3.1 has been

employed.

3.5.2.1 Weaknesses of Standard Particle Swarm Optimization

Diverse authors [22, 72] have demonstrated that the particles in PSO oscillate in

damped sinusoidal waves until they converge to new positions. These new positions

are between the global best position and their previous best position. During this

oscillation, a position visited can have better fitness than its previous local best, reac-

tivating the oscillation. This movement is continuously repeated by all particles until

the convergence is reached or an end execution criterion is met.

However, in some cases, where the global optimum has not a direct path between

current position and the local minimum already reached, the convergence is prevented.

In this case, the efficiency of the algorithm diminishes. From the computational point

of view, a lot of CPU-time is wasted exploring areas of suboptimal solutions already

discovered.

In order to avoid this pernicious effect, diverse alternatives to PSO formulation

have been proposed. Frequently, these enhancements are based on effects present in

the nature, enforcing the image of the PSO algorithm as a bio-inspired algorithm.

3.5.2.2 Production Setup

The study is conducted using a set of benchmark functions (Table 3.1). For these

functions, 400 tries of each configuration, each algorithm and each benchmark function

have been executed.

31

3. EVOLUTIONARY ALGORITHMS

To manage the complexity of the problem, involving several algorithms and bench-

mark functions, and a set of configurations for each of them; the grid jobs are created

with 50 tries of each configuration of one specific algorithm and function. This struc-

ture assures the optimization of the time execution for the grid environment. A total

of 8 runs per case are executed to reach the 400 tries.

Each job is composed with a shell-script that handles the execution, and a tarball

containing the source code (C++) of the program and the configuration files. When

the job arrives to the worker node, it executes the instructions of the shell-script: to roll

out the tarball, to compile the source code, to execute the 50 tries of each configuration

for a particular algorithm and benchmark function, and finally to resume in a tarball all

the output files. When the job finishes, the middleware recuperates the output tarball

containing the output files.

All PSO variants shares some common parameters, such as, c1 = c2 = 1 in Eq. 3.1,

and the maximum velocity, Vmax = 5 ; and configuration values of dimensionality (20,

100), population size (10, 100) and number of generations (100, 1000, 10000).

Finally, the production is composed by a total of 616 jobs, resulting from the 11

fitness functions and 7 PSO variants; and 8 runs per function and algorithm. As a

consequence that each job has 400 tries, the number of total tries executed is 246,400.

On the other hand, the mean CPU-time employed for run is 148.7 hours, then the total

CPU-time for the eight runs is 1,189.6 hours.

3.5.2.3 Results and Analysis

At Tables 3.6 and 3.7, a resume of the best results obtained for each fitness function,

and configuration is presented. For each fitness function and configuration, the PSO

variants which obtains the best result are presented. In the case of several variants

obtaining the same best results, all of them are presented.

From the results presented at Tables 3.6 and 3.7, it can be concluded that MeanPSO

is the variant which more frequently outperforms to the other PSO implementations.

It obtains the best result in 91 from the total 132 tests, the 69% of the tests, being the

algorithm dominant for the functions f3, f4, f6, f10 and f11. Moreover, the MeanPSO

produces the best results in 11 of the 12 configurations for f5, and for f7 it shares the

best results with FDRPSO for all configurations. However, in the functions f1 and f2

MeanPSO does not obtain any best result.

The second best variant is FDRPSO, obtaining 19 from the total tests, the 14%.

However, the best results for this algorithm are concentrated in the functions f7 and

f8.

32

3
.5

A
n
a
ly
sis

o
f
B
e
h
a
v
io
u
r
o
f
E
v
o
lu
tio

n
a
ry

A
lg
o
rith

m
s:

P
a
rtic

le
S
w
a
rm

A
lg
o
rith

m
a
s
C
a
se

S
tu

d
y

Table 3.6: Results of benchmarks of the PSO variants (Dimension, Population size and number of Generations) for the fitness
functions f1, f2, f3, f4, f5 and f6 after 400 tries.

D P G f1 f2 f3 f4 f5 f6

100

10
100 DPSO DPSO MeanPSO MeanPSO MeanPSO MeanPSO
1000 DPSO PSOME MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
PSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

100
100 DPSO PSO MeanPSO MeanPSO MeanPSO MeanPSO
1000 PSO PSO MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
PSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

20

10
100 PSO IWPSO MeanPSO MeanPSO MeanPSO MeanPSO
1000 PSO DPSO MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
PSO

PSOME DPSO MeanPSO MeanPSO MeanPSO MeanPSO

100
100 DPSO IWPSO MeanPSO MeanPSO MeanPSO MeanPSO

1000

DPSO
PSO

IWPSO PSOME MeanPSO MeanPSO MeanPSO MeanPSO

10000

DPSO
PSO

PSOME
IWPSO DPSO MeanPSO MeanPSO IWPSO MeanPSO

33

3
.
E
V
O
L
U
T
IO

N
A
R
Y

A
L
G
O
R
IT

H
M

S

Table 3.7: Results of benchmarks of the PSO variants (Dimension, Population size and number of Generations) for the functions
f7, f8, f9, f10 and f11 after 400 tries.

D P G f7 f8 f9 f10 f11

100

10
100

MeanPSO
FDRPSO PSOME MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO FDRPSO PSO MeanPSO MeanPSO

100
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO MeanPSO PSO MeanPSO MeanPSO

20

10
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO DPSO PSO MeanPSO MeanPSO

10000
MeanPSO
FDRPSO FDRPSO PSO MeanPSO MeanPSO

100
100

MeanPSO
FDRPSO FDRPSO MeanPSO MeanPSO MeanPSO

1000
MeanPSO
FDRPSO DPSO MeanPSO MeanPSO MeanPSO

10000

MeanPSO
FDRPSO
DPSO DPSO PSO MeanPSO MeanPSO

34

3.5 Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm
Algorithm as Case Study

For the third place, two variants obtain 17 best results (13%), they are PSO and

DPSO. Specially significant is the fact that the original algorithm obtains 17 best results

wining to other more complex variants.

At Tables 3.8, 3.9, 3.10 and 3.11 the previous results are digested by gathering

by diverse criteria. As it can be appreciated, there are not major differences in the

effectiveness of the variants face to different swarm size, cycles, dimensions or behaviour

of the fitness function.

Table 3.8: Best results of the PSO variants in relation with the dimension.

D PSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

20 8 5 3 9 11 0 44

100 7 0 2 10 8 0 47

Table 3.9: Best results of the PSO variants in relation with the swarm size.

P PSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

10 7 1 3 10 9 0 45

100 8 4 2 9 10 0 46

Table 3.10: Best results of the PSO variants in relation with the number of cycles.

G PSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

100 2 2 0 7 4 0 32

10,000 8 2 5 8 10 0 27

Table 3.11: Best results of the PSO variants in relation with the behaviour of the fitness
function.

Behaviour PSO IWPSO PSOME FDRPSO DPSO ARPSO MeanPSO

Monomodal 5 0 1 12 1 0 68

Multimodal 10 7 4 7 18 0 11

35

3. EVOLUTIONARY ALGORITHMS

3.6 Application of Evolutionary Algorithms to the Reso-

lution of Complex Problems: Bateman Conjecture as

Case Study

The Bateman’s Conjecture (Eq. 3.3) proposes how many coincidences of sum of powers

of two prime numbers are [98]. Until now only one coincidence has been found (Eq.

3.4). No previous survey of the Conjecture has been published in the scientific literature,

nor analytic demonstration has proved the existence of a finite or infinite number of

coincidences. This section presents the works performed to search more coincidences

in the Bateman’s Conjecture.

m
∑

i=0

pi1 =
n
∑

i=0

pi2 (3.3)

{

31 =
∑4

m=0 2
m = 1 + 21 + 22 + 23 + 24

31 =
∑2

n=0 5
n = 1 + 51 + 52

(3.4)

Taking into consideration the high computational cost of the conjecture’s survey, the

grid computing model is ideal to be used, independently if the brute force approach or an

approach based on EA is executed. The grid computing is more suitable jobs completely

independent, or with a very low level of coupling. The work units of Bateman problem

are free of any liaison among them.

The scientific production of this section has been supported by the grid infrastruc-

ture described at section 2.3.1.

In order to obtain the list of prime numbers, the project Primer-Numbers.org is

used. This project supplies files with lists of prime numbers.

3.6.1 Brute Force Approach

During the years 2007-2008, a systematic survey of the Conjecture of Bateman is per-

formed (Fig. 3.2). The prime numbers are grouped in intervals of 100,000, except for

1 to 100,000 which is divided in two segments: from 1 to 50,000 and from 50,000 to

100,000. The purpose behind this fact is to produce jobs with an ideal CPU-time con-

sumption for the grid computing. On the other hand, the maximum power reachable

for the sums of powers series is established at 30. This survey covers all prime numbers

lower than 15,000,000 and powers until 30; and the prime numbers until 100.000 for

powers until 60.

New coincidences of the Conjecture of Bateman was not discovered during this brute

force survey.

36

3.6 Application of Evolutionary Algorithms to the Resolution of Complex
Problems: Bateman Conjecture as Case Study

Figure 3.2: Solutions’ space explored for the Bateman Conjecture with the brute force
survey.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

E
xe

cu
tio

n
T

im
e

(s
)

Prime Numbers

Execution Time vs. Prime Numbers Tested

Figure 3.3: Growing up of aggregated execution time for the exploration of all prime
numbers lower than a threshold.

This survey tackles several difficulties; for example, it shows a very high CPU-time

consumption. This consumption increases with the power and the range of primes

explored. Furthermore, the number of jobs and the CPU-time consumption necessary

to finish a series, and therefore to close a threshold, also increase (Fig. 3.3).

In this scenario, the competence among the Bateman jobs with others to capture a

free worker node in the grid produces a dispersion of total CPU-time. Finally, due to

the higher number of jobs for each series; there is an extra risk of failure of a job which

ruins the whole series.

37

EA/figures/bateman/area-en.eps
EA/figures/bateman/tiemposbateman-en.eps

3. EVOLUTIONARY ALGORITHMS

Figure 3.4: Solutions’ space explored for the Bateman Conjecture with PSO and brute
force approaches.

3.6.2 Particle Swarm Optimizer Approach

In order to overcome the barriers appeared in the systematic exploration of the Conjec-

ture of Bateman, more intelligent methods should be utilised. As an alternative to the

systematic exploration, an EA would provide optimal solutions avoiding the exploration

of the whole solution space. A priory any kind of EA would be suitable.

Following the methodology of the PSO algorithm adapted to the Conjecture of

Bateman, a initial population, randomly created, of particles (candidate solutions) is

produced. Each particle of this population has four parameters: the two powers and

the two primes. Additionally, for each parameter an associated velocity is settled.

Moreover, as fitness function, the absolute value of the difference between the two

sums of power series is chosen, Eq. 3.5. The optimal solution will have a null fitness,

nevertheless the suboptimal solutions can reach any other positive value of the fitness.

Fitness = |
m
∑

i=0

pi1 −
n
∑

j=0

pj2| (3.5)

Firstly, a production aimed to tuning the behavioural parameter of PSO is per-

formed. Diverse values of population size, Vmax, c1 and c2 are tested with 50 jobs. The

most suitable values for those parameters are c1 = c2 = 2, Vmax = 5 (Eq. 3.1) and

1,000 particles; and they are used in the final production.

During this final production, the area explored is the primes lower than 1,000,000

and the powers until 40; with 400 jobs and 345.88 CPU-hours invested. In Fig. 3.4,

the whole solution space explored by the both techniques is shown. Unfortunately, no

new coincidences was discovered during this exploration.

38

EA/figures/bateman/area-bigger-en.eps

3.7 Conclusions

3.7 Conclusions

Along this chapter, specific aspects of the exploitation of EAs have been studied. For

instance, an update of the impact of the choice of the RNG over the performance of

some very popular EAs has been produced. From this study, it can be concluded that

the performance of these EAs is affected in a diverse degree provided that high-quality

RNGs are used.

On the other hand, studies about the use of multipopulation approach to improve

the performance of the PSO have been executed. Besides, the relative performance of

diverse variants of this algorithm has been also studied. Finally, an example of appli-

cation of PSO to the resolution of a complex problem (the search of more coincidences

in the conjecture of Bateman) has been presented.

39

3. EVOLUTIONARY ALGORITHMS

40

Chapter 4

GPU Computing

4.1 Introduction

G
PU computing has become a very popular platform for scientific computing due

to its capacity to fulfil the computational requirement of mid-sized groups, at the

same time that it maintains an affordable budget. However, the exploitation of GPU for

scientific computing is burdened with a non-trivial learning curve for the practitioners

and adaptation process of the code.

In this chapter some exploratory works in the area of GPU computing are pre-

sented. They include the study of optimum data layout for accelerating the evaluation

of benchmark functions on GPU, or the adaptation of PSO to GPU.

4.2 Related Work

4.2.1 Related Work for the Implementation of Evolutionary Algo-

rithms in GPU and Analysis of its Behaviour

During the last years, a plethora of works have covered diverse topics related with the

adaptation of EAs to GPU architecture. Some few examples of this kind of works

are: speeding-up the optimization of 0/1 knapsack problem with genetic algorithm

[79], dealing with the mapping of the parallel island-based genetic algorithm [78], or an

example of cellular genetic algorithm [96]; also there are examples in accelerating learn-

ing systems [34]; and specifically, examples of general-purpose parallel implementations

of PSO in GPU [69, 70, 82, 103, 104]; and implementations of Differential Evolution

[25, 30].

The study [103] is the closer one to the work presented in Section 4.3. In this

article similar benchmark functions and the same EA (PSO) are employed. The main

difference is the dimensionality employed. In this study the dimensionality ranges from

41

4. GPU COMPUTING

50 to 200; whereas in our study a higher dimensionality has been used —20,000— in

order to check the behaviour for extremely large-scale problems.

Although the most frequent topics are the adaptation of EAs to GPU, other studies

cover theoretical aspects of optimisation problems. An example of this kind of work

is the study of the models of parallel EAs in GPU [55], where three basic models for

adaptation of EAs to GPU hardware are presented.

However in the bibliography reviewed, there are not examples of analysis of the

capacity of different implementation models to accelerate the execution of PSO and

other EAs in GPU. The current work covers this kind of in-depth analysis of the

occupancy of the blocks and its impact on the final performance.

4.2.2 Related Work for the Effect of Data Layout on GPU Evaluation

Time

Evolutionary computing has taken a great advantage of the appearance of GPU. Many

works are published every year by describing how evolutionary problems are accelerated

by transferring partially or totally the execution to GPU. Generally these works focus on

the problem and how to accelerate it. This purpose is achieved through a wide variety

of improvements, but in most of the cases the data layout is fixed at the beginning

of the problem without testing alternative layouts. Some few examples of this kind of

works have been presented in the previous section.

Generally, authors modify the parameters of the algorithm, such as: population

size, mutation or crossover rates in genetic algorithms, or maximum velocity in PSO;

and GPU configuration parameters, such as: number of blocks or number of threads per

block, or the distribution of data between global memory, shared memory and registers.

However, the initial data layout remains mostly unaltered along the problem. Probably

the initial data layout is the most intuitive for the authors. This avoids exploring other

configurations. For this reason, works addressing similar issues have not been found.

4.3 Implementation of Evolutionary Algorithms in GPU:

PSO as Case Study

Many scientific and technical problems have improved their performance through the

use of GPU cards. GPU allows accelerating the execution of these problems, including

those dealing with Evolutionary Algorithms (EAs) to optimize continuous functions.

This section presents a study of the improvements in performance when evaluating

EAs in GPU1. This study analyses the variation of performance under diverse con-

1All the works in this section have been obtained by using a GTX295 (section 2.3.3.1).

42

4.3 Implementation of Evolutionary Algorithms in GPU: PSO as Case
Study

figurations; such as: which functions are suitable to be evaluated in GPU and which

are not, and variations of the problem size, population size and dimensionality of the

individuals.

The study of high-dimensional problems has to face with long-execution times,

and therefore, difficulties to reach high-statistics. Large-scale optimisation problems

require powerful computing platforms in order to reduce the time consumption. Thus,

accelerating with GPUs, more tries can be executed by time unit. As a consequence,

the main drawback of high-dimensional optimization problems with EAs, the large

increment of execution time is overcome.

4.3.1 GPU-Based Evaluation to Accelerate Particle Swarm Algorithm

4.3.1.1 Parallel Models of Evolutionary Algorithms

For non-trivial problems, to execute the reproductive cycle of a simple EA with long

individuals and/or large populations requires high computational resources. In general,

evaluating a fitness function for every individual is frequently the most costly operation

of the EA.

In EAs, parallelism arises naturally when dealing with populations, since each of

the individuals belonging to, it is an independent unit. Due to this, the performance

of population-based algorithms is specially improved when running in parallel. Parallel

Evolutionary Algorithms (PEAs) are naturally prone to parallelism, since most of the

operations can be easily undertaken in parallel.

Basically, three major parallel models for EAs can be distinguished [2]: the island

a/synchronous cooperative model, the parallel evaluation of the population and the

distributed evaluation of a single solution.

The parallel evaluation of the population is recommended when the evaluation is the

most time-consuming. This model has been selected in our adaptation of the application

to GPU. The parallel evaluation follows a master-worker model. The master operation

lies in CPU, and it is: the transformation of the population, as well as the generation

of the initial random population.

Otherwise, the evaluation of population is performed in GPU (worker). When

the particles need to be evaluated, the necessary data are transferred to GPU. After

the evaluation, the results return back to CPU, and the CPU-code part regains the

control. In the next cycle, the evaluation of the population is allocated again in GPU

to be evaluated.

43

4. GPU COMPUTING

4.3.1.2 Production Setup

In order to stress the capacity of GPU, the functions Schwefel’s Problem 1.2 (Eq. 4.1)

and Rosenbrock function (Eq. 4.2) have been used. These functions have a global

minimum at ~0 = (01, 02, . . . , 0D). The main features of these functions are: both are

fully-non-separable and the highest CPU-time consumption is the evaluation. They

have been used in the editions of CEC 2008 and 2010 Special Session and Competition

on Large-Scale Global Optimization (CEC competition) as benchmark functions [94,

95].

fSchwefel′s Problem 1.2 =
D
∑

i=1

(
i

∑

j=1

xj)
2 (4.1)

fRosenbrock =
D−1
∑

i=1

100 · [(x2i − xi+1)
2 + (xi − 1)2] (4.2)

Concerning the number of tries, in all cases 15 tries are executed. As pseudorandom

number generator, a subroutine based on Mersenne Twister has been used [59].

4.3.1.3 Adaptation of PSO Algorithm

The invocation of the kernel is made with a bi-dimensional grid of blocks and allocating

all threads of each block in a one-dimensional array. Regarding the grid of blocks, the

dimension in y-axis represents the number of particles and the number of blocks in x-

axis is made in such way that they can allocate all the dimensions of a particle. Taking

into account that each block contains 512 threads for GTX295 (section 2.3.3.1), for

particles with 1,000 variables two blocks are necessary, for particles with 5,000 variables

10 blocks are necessary, and so on. This distribution of data in the bi-dimensional grid

of blocks eases the calculation of fitness, being possible a huge parallelization of the

process.

This particular distribution of data has an important extra value. It is suitable for

any population-based EA, easing the manipulation of the data and its coupling to any

other population-based EA. The final result is an independent piece of software, the

kernel where the function is evaluated, easily pluggable to any other population-based

EAs.

4.3.1.4 Study of the Rosenbrock Function

A priory, it is foreseeable that any fully-non-separable function will be suitable for

parallel evaluation in GPU. However the tests performed with the Rosenbrock function

44

4.3 Implementation of Evolutionary Algorithms in GPU: PSO as Case
Study

CPU GPU
Evaluation

0

10

20

30

40

50

60

70

T
im

e
 (

s)

Rosenbrock Function

CPU GPU
Evaluation

0

1000

2000

3000

4000

5000

T
im

e
 (

s)

Schwefel Problem 1.2

Figure 4.1: Comparative box plots —15 tries— for CPU and GPU codes of execution time
for Rosenbrock function —left— and Schwefel Problem 1.2 —right—, and dimensionality
20,000 and 20 particles.

does not show any speedup, being the execution time for GPU version longer than

the execution time for CPU version (Fig. 4.1 left). This is due to the low number of

particles used.

In order to clarify the behaviour of both functions when executing the evaluation

in CPU or in GPU, an in-depth analysis of the transfer and execution of the kernel is

performed.

In the tests performed with both functions, the time of copying data from CPU

to GPU memory, executing the kernel (evaluation) and copying back the data from

GPU to CPU memory have been measured (Table 4.1). As it can be seen, for equal

dimensionality the transfering-data time is similar for both functions. On the contrary,

the kernel execution time is quite different, being much higher for Schwefel’s Problem

1.2 than for Rosenbrock function. This demonstrates that the Rosenbrock function is

to light to profit of the inherent parallelism of GPU architecture, at least for the con-

figurations checked. Oppositely, the double sum that composes the Schwefel’s Problem

1.2 obtains a definite speedup when executing in parallel.

Comparing the complete sequence of moving data between memories and the kernel

execution in GPU with the execution time of the sequential evaluation (Table 4.2), re-

markable differences arise. For the Rosenbrock function, the values are similar wherever

the evaluation is performed, in CPU or in GPU, whereas for the Schwefel’s Problem

1.2 the evaluation for CPU version takes much longer than for GPU version.

45

GPU/figures/executiontime-RosenbrockSchwefel1.2Function.eps

4. GPU COMPUTING

Table 4.1: Mean Execution Time (10−6s) for transfer data between CPU and GPU
memories and kernel execution in Schwefel Problem 1.2 and Rosenbrock function for di-
mensionalities 1,000 and 10,000; and 20 particles.

Function Dimensionality
Transfer

CPU to GPU
Kernel

Execution
Transfer

GPU to CPU

Schwefel’s
Problem 1.2 103 0.0888 0.555 0.1160

Rosenbrock 103 0.0905 0.0723 0.0917
Schwefel’s
Problem 1.2 104 0.4237 37.5213 0.4774

Rosenbrock 104 0.4414 0.3041 0.4665

Table 4.2: Mean Execution Time (10−6s) for one evaluation in CPU and in GPU in
Schwefel’s Problem 1.2 and Rosenbrock function for dimensionalities 1,000 and 10,000;
and 20 particles.

Function Dimensionality
Evaluation
on CPU

Evaluation
on GPU

Schwefel Problem 1.2 103 18.976 0.761

Rosenbrock 103 0.085 0.255

Schwefel Problem 1.2 104 1,215.520 38.422

Rosenbrock 104 0.751 1.212

46

4.3 Implementation of Evolutionary Algorithms in GPU: PSO as Case
Study

Figure 4.2: Comparative box plots of speedup and each dimensionality 1,000; 5,000;
10,000; 15,000 and 20,000, and 20 individuals for the Schwefel’s Problem 1.2.

4.3.1.5 Study of Schwefel’s Problem 1.2

The improvement in the execution time of a parallel application can be evaluated by

using the speedup, defined as S = TinCPU

TinGPU
, where TinCPU is the execution time of

the sequential version and TinGPU is the execution time for the GPU version. In this

section, the speedup achieved for diverse problem sizes is presented.

As it can be seen at Fig. 4.2, the speedup increases as much as the dimensionality

of the problem increases. At Fig. 4.2 box plots are built with the values of speedup,

corresponding to the dimensionality ranking from 1,000 to 20,000. The cases with

higher dimensionality show a better harness of the parallelism capacity of GPU. As

much as the number of variables grows, the capacity of GPU to map data to threads

increases the parallel capacity of the hardware.

The application of the Kruskal-Wallis test and the Wilcoxon signed-rank test with

Bonferroni correction indicates that all the differences in the speedup are significant

—α = 0.05—.

4.3.1.6 Varying Population

Focusing on Schwefel’s Problem 1.2, the speedup when varying the population size is

presented at Fig. 4.3. This corresponds to population sizes ranking from 10 to 50

individuals, and dimensionality in all cases of 10,000. As it can be appreciated, the

speedup goes up when the population augments in the range from 10 to 30. However,

for further increments, it does not produce any extra speedup.

In all population-based EAs, the parallelism arises naturally. For example, for PSO

each particle is independent from the other particles. Therefore, when the population

47

GPU/figures/speedup.eps

4. GPU COMPUTING

10 20 30 40 50
Population size

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

S
p
e
e
d
-u

p

D 10,000

Figure 4.3: Comparative box plots of speedup for diverse population size and dimension-
ality 10,000 for the Schwefel’s Problem 1.2.

size is small, any increment will help to mask the latency of the memory access, through

the allocation of other calculations without data dependencies. In this case, a more

efficient usage of the parallelism of the hardware is produced. Oppositely, when the

population size is larger, any increment should be serially scheduled, and as a conse-

quence, it does not produce any improvement in the performance.

The application of the Kruskal-Wallis test to the data of the speedup when varying

population size indicates that the medians of all of the groups are no-equal; and the

Wilcoxon signed-rank test with Bonferroni correction demonstrates that all the differ-

ences are significant —α = 0.05—; except for the differences between population sizes

30, 40 and 50.

4.4 Analysis of the Behaviour of Evolutionary Algorithms

in GPU: PSO as Case Study

Many features in the GPU programming produce a reduction of the execution time. In

this section, the effect of the occupancy when the PSO algorithm optimizes the Schwefel

problem 1.2 (Eq. 4.1), is studied. Equally to the previous section, the works described

in this section have been performed by using a GTX295 (section 2.3.3.1) and a C2050.

This last card is similar to C2075 described at section 2.3.3.2 but it only incorporates

3 GB of global memory instead of the 6 GB of the C2075.

Concerning the adaptation process, it is important to underline the importance

of the matching of data and parallel processing elements. So that, the same data

layout that described in Section 4.3.1.3 is used in this study. The PEA model and the

configuration of PSO is identical to those described in the previous section.

48

GPU/figures/speedup_varyingPopulation.eps

4.4 Analysis of the Behaviour of Evolutionary Algorithms in GPU: PSO as
Case Study

(a) Speed-up in GTX295 (b) Speed-up in TESLA C2050

Figure 4.4: Comparative box plots of speed-up in GTX295 and TESLA C2050 for di-
verse configurations of threads per block —100%, 50%, 25% and 12.5%— and 15 tries per
configuration for the Schwefel’s Problem 1.2.

4.4.1 Results and Analysis

The configuration employed in this study has been selected requiring: to stress the

potential capabilities of the GPU cards, to stretch out as much as possible the data on

the threads and blocks and to be representative of large-scale problems in continuous

optimization. In all cases, the population size is 20 individuals, the dimensionality of

the search space is 20,000 and the number of cycles is 1,000. Finally, the occupancies

range from 100% to 12.5%. For each configuration, 15 tries are executed.

In Table 4.3 and Fig. 4.4(a), the speed-ups produced in the GTX295 by the re-

duction of the occupancy of the blocks —100%, 50%, 25% and 12.5%— are presented.

The analysis of these data shows that the progressive decrement of the occupancy in

the block produces an increment in the speed-up higher than 1.7 in percentage. This

improvement becomes less relevant for further reduction of the occupancy: 1.3 from

100% to 50%, 0.5 from 50% to 25%. Nevertheless, this improvement disappears when

the occupancy falls below 25%. In this case, a strong degradation of the performance

for small occupancy emerges from the experimental data.

In Table 4.3 and Fig. 4.4(b), the speed-ups produced in the TESLA C2050 by the

reduction of the occupancy of the blocks are presented. Alike to the GTX295, in the

TESLA C2050 an increase of the speed-up appears when the occupancy of the blocks

is reduced from 100% to 50%, and for further reductions. However, the increment in

TESLA C2050 is less significant than the equivalent reduction observed in the GTX295

when the occupancy reduces.

On the contrary to GTX295, in TESLA C2050 a degradation of the performance

is not observed when the occupancy diminishes below 25%. Nevertheless, the data are

49

GPU/figures/speedup-threads_GTX295.eps
GPU/figures/speedup-threads_C2050.eps

4. GPU COMPUTING

Table 4.3: Mean speed-up and standard deviation —after 15 tries per configuration— in
GTX295 and TESLA C2050 versus CPU codes for diverse number of threads per block for
the Schwefel’s Problem 1.2.

GTX295
Occupancy

TESLA C2050
Threads
per Block Speed-up Speed-up

Threads
per Block

512 26.76±0.20 100% 43.43±0.30 1024

256 28.09±0.13 50% 43.64±0.23 512

128 28.54±0.14 25% 43.81±0.20 256

64 20.44±0.10 12.5% 43.90±0.26 128

so close that the significance of the difference has to be checked by statistical methods.

The application of the Wilcoxon signed-rank test with the Bonferroni correction to

the TESLA C2050 results demonstrates that the differences are not significant. On

the contrary, the numerical results of the speed-up of GTX295 demonstrate that the

differences are significant.

4.5 Effect of Data Layout on GPU Evaluation Time

GPUs are able to provide a tremendous computational power, but their optimal usage

requires of the optimization of memory access. The many threads available can mitigate

the long memory access latencies, but this usually demands a reorganization of the data

and the algorithm to reach the performance peak. The addressed problem is to know

which data layout produces a faster evaluation when dealing with population-based

evolutionary algorithms optimizing non-separable functions. This knowledge will allow

a more efficient design of evolutionary algorithms. Depending on the fitness function

and the problem size, the most suitable layout can be implemented at the design phase

of the algorithm, avoiding later costly code or data layout redesigns.

In this work, diverse non-separable functions, such as Rosenbrock and Rana func-

tions, and data layouts are evaluated. The implemented layouts cover the main tech-

niques to maximize the performance: coalesced access to global memory, intensive use

of on-chip memory: shared memory and registers, and variable reuse to minimize the

global memory transactions.

The works described in this section have been performed by using a GPU C2075

(section 2.3.3.2).

50

4.5 Effect of Data Layout on GPU Evaluation Time

4.5.1 Strategies Tested

4.5.1.1 Strategy 1: Allocation of one Individual per Thread on Registers.

In the two first strategies (S1 and S2) presented, each individual is handled by a single

thread. Both strategies exploit the fast access to on-chip memory. In S1, registers are

used to accumulate the coordinates of the individuals, whereas in S2 shared memory is

used instead of registers. In both cases the intermediate fitness values are accumulated

on shared memory. Other tests, where the registers are used to accumulate the inter-

mediate fitness values have been also performed. However, no-significant modifications

in the execution times are produced.

Besides, in both strategies the input array is ranged as a sequence of individuals:

firstly all the coordinates of the first individual, then all the coordinates of the second

individual, and so on.

In S1, each single thread executes a for-loop sequentially over the coordinates of one

individual. At the beginning of the sequence, some values are necessary to calculate

the first partial fitness. Next, one coordinate is read ahead to produce a new part of

the fitness which is gathered over the previous value of the accumulated partial fitness.

In each step, only a new coordinate is downloaded from global memory to on-chip

memory (register for S1 and shared memory for S2). The remaining values, necessary

to calculate the partial fitness, have been loaded and stored on the on-chip memory

in the previous steps. This schema saves global memory accesses, replacing them by

faster on-chip memory accesses. The number of saved accesses per cycle and individual

depends on the number of necessary values to calculate a partial fitness value.

A priori this strategy would be more suitable for the evaluation of large populations,

because each individual evaluation is independent of the others, and therefore, a large

parallelism degree is reached. For small populations of high-dimensional individuals,

this strategy is penalized because few threads are mobilized (as threads as individuals),

and therefore, few streaming multiprocessors (SM) are active.

Regarding the limitations of the approach, it can be foreseen that this strategy is

constrained by the total number of threads that the GPU can allocate. However, this

number is high enough to allow fast evaluation of large size problems. A second limi-

tation could be the consumption of on-chip memory when evaluating fitness functions

requiring many coordinates of the individual. For example, Rosenbrock function (Eq.

4.2) only requires two coordinates, whereas the tailored functions require two (Eqs. 4.4

and 4.5) and four (Eqs. 4.6 and 4.7) respectively. In this case, the thread-block has to

allocate a high number of registers to hold all of the necessary values to calculate the

partial fitness.

51

4. GPU COMPUTING

Finally, an important drawback is envisaged for the S1 and S2 strategies. The

conjunction between the data layout (a sequence of individuals) and the sequential

access to the dimensions of each individual creates a stride pattern access to the global

memory, which is pernicious for the performance.

Global memory is always read in chunks of 128 bytes (length of a cache line) by 32

consecutive threads1. If a part of a cache line reading involves no-necessary data for

the calculations or simply not all necessary data for the calculation for the 32 threads

fill the cache line, then global memory bandwidth is being wasted. As a consequence,

the bus transactions are increased to complete the necessary data for the calculations.

In S1 and S2, when dimensionality is equal or higher than 32, due to the disposition

of the individuals, only one float is valid (from the 128 bytes read) for the 32 threads

involved. Therefore, to read the 32 dimensions for the 32 consecutive threads, 32 bus

transactions are necessary. As can be appreciated, most of the memory bandwidth is

misused.

When dimensionality is lower than 32, more that one float is valid in each bus trans-

action, but still a part of the global memory bandwidth is underused. If dimensionality

is 16, then only 2 data are valid in the transaction; and, if dimensionality is 8, then

only 4 data, and so on. This cache trashing severely degrades the performance. In the

following strategies: S3 and S4, two alternatives to circumvent the stride access are

presented2.

In spite of the disadvantages drawn, it is important to emphasize the capacity of

this strategy to cope with extremely large problem sizes. For this reason, and because

it is one of the most intuitive layout when adapting evolutionary problems to GPU,

this strategy is considered to be evaluated.

4.5.1.2 Strategy 2: Allocation of one Individual per Thread on Shared
Memory.

This second strategy is very similar to the previous one but using shared memory

to support the stencil instead of the registers. When implementing stencil in shared

memory, some accesses to global memory are already saved. Similarly to S1, some

necessary coordinates to calculate the partial fitness have been previously downloaded

1It exists a particular case in Fermi architecture which modifies this feature. In pre-Fermi archi-
tecture the available memory transaction segment sizes are: 32, 64 and 128 bytes. The selected value
depends on the amount of memory needed and the memory access pattern. The selection is auto-
matic in order to avoid wasting bandwidth. In Fermi architecture, the memory transaction segment
size follows a different rule. When L1 cache memory is enable, the hardware always issues segment
transactions of 128 bytes, the cache-line size; otherwise, 32 bytes segment transactions are issued. In
our study, default configuration of L1 is enable in all numerical experiments.

2In Fermi architecture L1 and L2 cache memory can mitigate partially this penalization.

52

4.5 Effect of Data Layout on GPU Evaluation Time

and stored from global memory into the shared memory. In order to hold these values

on shared memory, some arrays have to be defined. These arrays have the same role

as the variables defined in registers in S1.

Both S1 and S2 handle the individuals in parallel, but sequentially their dimensions.

A priori this is more suitable for large populations than for small populations of high-

dimensional individuals.

This strategy benefits from the absence of divergence in the warps, as well as a

significant reduction of global memory transactions. On the contrary, it suffers from

limitations steamed from the shared memory consumption, similarly to the register

consumption in S11.

Finally, the most important drawback in S1 and S2 is the non-coalesced access to

global memory. In the next strategies two alternative layouts are presented. They

introduce the appropriate modifications in order to get coalesced access to global mem-

ory.

4.5.1.3 Strategy 3: Allocation of one Individual per Thread-Block on Share
Memory with Coalesced Access to Global Memory and Atomic
Operations.

In this third strategy, the main difference holds on how the individual is managed:

each individual is handled by a single thread-block, instead of a single thread as in the

previous strategies. This layout forces to select the number of threads per block equal to

the dimensionality of the individual. This constraint marks a weakness in the strategy:

the maximum threads per block allowed in the GPU2 is the maximum dimensionality

that this strategy can evaluate. Even though the highest allowed dimension for the

individuals is the maximum threads per block, a reduction of this constraint is expected

by the progressive increment of this value in future GPU architectures.

Although there exist techniques to deal with individuals with larger dimensionality

than the maximum number of threads per block3, these techniques are not considered

in this work.

Since the individuals are disposed sequentially (as in S1 and S2), each thread ac-

cesses to some dimensions of an individual to calculate the partial fitness. These di-

mensions are accessed in a coalesced mode: consecutive threads access to consecutive

1In the numerical experiments, the configuration with maximal shared memory (48KB) is used.
2The maximum number of threads per block in pre-Fermi architecture is 512, whereas in Fermi

architecture is 1024.
3The techniques are able to deal with larger individuals than the maximum number of threads per

block are mainly two: to spread out the individual over more than a single thread-block including halo
coordinates and later to use global memory to gather the partial fitness values of each individual, or
to treat the individual in chunks of the maximum number of threads per block.

53

4. GPU COMPUTING

global memory directions. After getting the necessary data, each thread calculates a

chunk of the fitness values in parallel, and stores it in the shared memory for later

reduction.

Oppositely to the previous strategies, in S3 the calculation of the fitness function

is executed in parallel, not only among the individuals, but also for the partial fitness

of each individual. This is an advantage in relation to the previous strategies.

For the final reduction of the partial values of the fitness of the individual, two

alternatives are considered:

• Folding of the array containing the partial fitness by the half successively, up to

accumulate the addition of all the values over the first element of the array. This

reduction technique has a relevant advantage in the high-degree of parallelism

reached; however it also has an important drawback: it is only valid for 2n di-

mensional individuals. Individuals with different dimensionality from 2n have to

be filled in with null values to reach the next 2n value. Whereas the objective

is to present the most general implementation with the widest applicability, this

reduction technique is dismissed.

• Use of atomic operations, concretely atomicAdd(). Although the atomic opera-

tions should produce a degradation of the performance, this can be mitigated by

parallelizing the reduction with atomic operations for the individuals on shared

memory.

4.5.1.4 Strategy 4: Allocation of one Individual per Thread on Registers
with Coalesced Access to Global Memory.

In this last strategy, the S1 strategy is modified to mitigate the penalty of the stride

global memory access. In order to overcome the non-coalesced access, a transposition

of the input data is performed previously to the transfer to global memory. This

transposition modifies the disposition of the elements from a sequence of individuals to

a sequence of the same coordinate of the individuals: firstly the first coordinate of all

individuals, then the second coordinate of all individuals, and so on.

By using the present disposition, 32 consecutive threads access to 32 consecutive

floats (128 bytes) to obtain the value of a particular dimension of 32 individuals. As a

result, the access to global memory becomes coalesced and the length of the cache line

is fully used.

Alike in S1, in S4 a single thread deals with a individual. Therefore, the individuals

are handled in parallel but their dimensions are still sequentially managed. The other

benefits and drawbacks of the S1 strategy are still valid for S4.

54

4.5 Effect of Data Layout on GPU Evaluation Time

By comparing S3 and S4, two different ways to gain coalesced access to global

memory are implemented. In S3 the calculations are modified to adapt them to the

data layout; whereas, in S4 the modification is performed over the data layout.

4.5.1.5 Sequential Evaluation

For the sake of completeness, a purely sequential evaluation is also implemented, and

its results are used in the comparisons. Considering the non-negligible cost of the

data transfer between CPU and GPU, for reduced problem sizes, CPU evaluation is

expected to be faster than the operations’ set: transfer from CPU to GPU of population

data, evaluation of individuals, and retrieval of the fitness data from GPU to CPU.

Comparisons with sequential evaluation discern which problem sizes are more suitable

for GPU or CPU evaluation.

4.5.2 Benchmark Functions

In general, the difficulty to find high-quality solutions and the evaluation time of the

fitness functions in evolutionary computing increase with the dimensionality of the in-

dividuals and the population size. However, there are other relevant factors related

with the separability of the fitness function. A function can be declared as separable if

the variables are independent. This kind of problems is easier to solve by using evolu-

tionary algorithms since a variable can be optimized while the rest is kept unchanged.

By iteratively using this mechanism, all of the variables can be easily optimized. Even

more, separable functions are often readily solved by local search methods. This is

the main reason why some authors argue that they should not be incorporated to test

suites [100].

On the contrary, the so-called non-separable fitness functions cannot implement this

mechanism, since the variables are not independent. A non-separable function is called

m-non-separable if at least m variables are not independent. In the extreme case, where

neither variable is independent of the others, the function is called fully-non-separable.

In evolutionary computing, specially in the benchmark functions used in continuous

optimization contest [94, 95], there exist well-known fully-non-separable functions as:

Rosenbrock (Eq. 4.2) [88] or Rana function (Eq. 4.3).

fRana =
∑D−1

i=1 (xi+1 + 1.0) · cos(t2) · sin(t1) + cos(t1) · sin(t2) · xi
where t1 =

√

|xi+1 + xi + 1.0| , and t2 =
√

|xi+1 − xi + 1.0| (4.3)

55

4. GPU COMPUTING

On the other hand, functions specially designed for this work are also employed.

These functions allow a finer-grained control over the computational intensity of the

benchmark function. For example, expensive and non-expensive calculation functions

(Eqs. 4.4, 4.5) will allow an in-detail characterization of the behaviour of the data

layouts.

These functions have been constructed simulating the Rosenbrock function: incor-

porating a fixed number of dimensions to calculate each term of the fitness function.

The recommendations for constructing this type of functions have been followed in

order to compose these new non-separable functions [100].

f2−light =
D−1
∑

i=1

(xi + xi+1)
2 (4.4)

f2−heavy =
D−1
∑

i=1

log

√

log(
1√
xi
) + log(

1
√
xi+1

) (4.5)

f4−light =
D−3
∑

i=1

(xi + xi+1 + xi+2 + xi+3)
2 (4.6)

f4−heavy =
D−3
∑

i=1

log

√

log(
1√
xi
) + log(

1
√
xi+1

) + log(
1

√
xi+2

) + log(
1

√
xi+3

) (4.7)

4.5.3 Results and Analysis

4.5.3.1 Rosenbrock Function

In this section, the performance achieved by each strategy when evaluating the Rosen-

brock function is discussed. The execution times (mean and standard deviation) of the

strategies for several configurations are presented in Table 4.4. The problem sizes have

been selected for being representative of the state-of-the-art problem sizes, and map-

ping the transitions between the most suitable strategies. Most of the configurations

have been selected with population equal to dimensionality. Where an unequal config-

uration is chosen, the objective is to map the transition between two best strategies,

narrowing the uncertain border.

For each problem size, diverse threads-per-block configurations are executed. From

the execution times obtained, the best results for each strategy are retained and pre-

sented. For example, for 100×100 configuration, two configurations of threads per block
are tested: 32 and 64; whereas, for 2,000×2,000, four configurations are tested: 128,

256, 512, and 1024 threads per block. In order to fairly compare, for the sequential

56

4.5 Effect of Data Layout on GPU Evaluation Time

strategy equal number of executions are produced, and then retaining the best one.

Furthermore, for each case a total of 20 tries are executed.

On the other hand, input data are randomly generated in the range (0,1). Identical

input files are used for all the executions of a particular configuration.

The results in Table 4.4 provide information about which strategy is the most

suitable. Mildly speaking, sequential evaluation is the fastest strategy for the evaluation

of the Rosenbrock function if the population and the dimensionality are up to 1,000.

For these configurations, the cost of data transfer between CPU and GPU penalizes the

GPU implementations. This penalization is not balanced by a parallel, and therefore

faster, evaluation of the population.

However, when increasing problem sizes, the evaluation time of the sequential strat-

egy dramatically grows, being no-longer the best option. For problem sizes equal or

larger than 1,500×1,500, the penalization due to the data transfer between CPU and

GPU is counteracted by a faster evaluation.

When dealing with large problem sizes, the S4 strategy outperforms all of the other

strategies. In this strategy, the coalesced access to data in global memory produces

an efficient usage of the bandwidth. On the other hand, the a priori flaw of the se-

quential treatment of the coordinates of each individual in S4 becomes a robust feature

when evaluating very high-dimensional individuals. In this case the on-chip memory

consumption is still moderated, because few variables per individual have to be simul-

taneously allocated on registers.

On the contrary, for these very high-dimensional individuals, the maximum num-

ber of threads per block becomes a major limiting factor in S3. This does not allow to

evaluate individuals larger than 1024 in Fermi architecture (512 for pre-Fermi architec-

ture). Even more 1,000×1,000 and higher configurations are not evaluable by S3 due

to the depletion of the shared memory.

This depletion of the shared memory is also the reason why 8,000×2,000 configura-

tion is not allocatable on S2 strategy. This demonstrates that strategies implementing

registers as support for the intermediate data are more robust than strategies only

implementing shared memory.

In Fig. 4.5, the results of Table 4.4 have been analysed using Linear Support Vector

Machine1 (LinearSVM) [24]. The use of SVM allows the knowledge extraction from

large numerical data sets. Through building a model with SVM, patterns in data can

be inferred, being the model more comprehensible than the numerical output [40]. If

data are linearly separable, then LinearSVM is the simplest SVM classification model.

1It is assumed that the data are linearly separable.

57

4
.
G
P
U

C
O
M

P
U
T
IN

G

Table 4.4: Mean execution time and standard deviation for Rosenbrock function depend-
ing on data layout.

Pop. × Dim. S1 S2 S3 S4 Sequential

100×100 0.237±0.005 0.255±0.003 0.145±0.004 0.170±0.003 0.026±0.001
200×200 0.444±0.004 0.484±0.002 0.365±0.006 0.314±0.002 0.098±0.003

1,000×1,000 3.188±0.014 3.389±0.012 NAN 2.481±0.019 2.432±0.041
500×2,000 4.733±0.023 5.129±0.067 NAN 3.439±0.045 2.422±0.029
2,000×500 2.558±0.013 2.549±0.020 NAN 1.962±0.071 2.431±0.048
1,500×1,500 6.218±0.163 5.907±0.106 NAN 4.651±0.018 5.620±0.029
2,000×2,000 9.723±0.075 9.685±0.135 NAN 7.533±0.110 10.129±0.032
1,000×4,000 12.129±0.233 13.093±0.092 NAN 9.539±0.253 10.386±0.025
4,000×1,000 8.723±0.020 10.030±0.041 NAN 6.633±0.067 10.143±0.035
4,000×4,000 22.426±0.034 22.431±0.064 NAN 22.425±0.049 40.856±0.021
2,000×8,000 39.284±0.067 40.110±0.038 NAN 30.369±0.101 40.552±0.107
8,000×2,000 33.076±1.202 NAN NAN 26.601±0.069 40.536±0.083

58

4.5 Effect of Data Layout on GPU Evaluation Time

0 1000 2000 3000 4000 5000 6000 7000 8000
Population

0

1000

2000

3000

4000

5000

6000

7000

8000

Di
m

en
si

on

LinearSVM applied to Rosenbrock function results.

Figure 4.5: LinearSVM applied to the results of Rosenbrock function: the two data
categories correspond to sequential evaluation for small and mid-size configurations, and
S4 for large configurations. The support vectors for the first class (sequential evaluation)
are 1,000×1,000 and 500×2,000; whereas for the second class (S4) is 1,500×1,500.

The application of LinearSVM to the numerical results allows showing the area

(population size and dimensionality of individuals) where a particular data layout is

the most suitable one, as well as the location of the borders between the areas.

Fig. 4.5 shows a clear distinction between the suitable configurations for sequential

evaluation and the suitable configurations for GPU evaluation. The maximum-margin

hyperplanes provide a visual estimation for the borders between the two data classes:

sequential evaluation for small and mid-sized configurations, and S4 for large configu-

rations. The support vectors pinpoint the configurations limiting the data categories:

1,000×1,000 and 500×2,000, for sequential strategy; and 1,500×1,500 for the S4 strat-

egy.

Summarizing, decision-making about the most suitable evaluation strategy for the

Rosenbrock function can be easily adopted by using Fig. 4.5.

4.5.3.2 F2-Light and F2-Heavy

Rosenbrock function constitutes an excellent example of non-separable function. How-

ever more functions are needed if the target is to characterize the behaviour of the

problem based on how the data layouts are presented. For this reason, four more

functions are constructed and their results analysed in this section and the following

one.

59

GPU/figures/fRosenbrock.eps

4. GPU COMPUTING

The first function, f2−light, is a Rosenbrock-like function with non-expensive calcu-

lation (Eq. 4.4), whereas the second one, f2−heavy (Eq. 4.5), is similar to the previous

one, but replacing the very light inner calculations of the function by expensive opera-

tions from the computational point of view. With constructing these tailored functions,

the computational intensity assigned to each thread is under-control. Similar to Rosen-

brock, for fitness calculation both functions involve only two consecutive coordinates

of the individuals.

The main difference between f2−light and f2−heavy is on the computational intensity

supported by each thread to complete a partial fitness calculation. Because of this

difference, each function results in a different relation between the access to data on

global memory and the life-time of data on-chip memory. For the light version, the

accesses to data in global memory per time unit are much higher than in the expensive

version. For the expensive version, the calculation takes longer, and therefore, data

should reside on the on-chip memory during a longer period. Consequently, the access

to global memory per unit of time becomes more sparse.

The results of this study are presented using a LinearSVM plot: Fig. 4.6 for f2−light,

and Fig. 4.7 for f2−heavy. The different results show the tendency for other non-

separable functions when increasing its computational intensity.

The f2−light function has a lower computational intensity than Rosenbrock func-

tion, and for this reason, much larger problem sizes are the only suitable for GPU eval-

uation. The support vectors (Fig. 4.6) indicate that the limiting configurations are:

4,000×1,000 and 1,000×4,000 for the largest suitable configuration for CPU evaluation,

and 4,000×4,000 for the lowest suitable configuration for GPU evaluation. Similarly to

the Rosenbrock function, for the large-configurations case the appropriate strategy is

S4.

By comparing the plots for f2−light and f2−heavy, and both with Rosenbrock one,

the most significant deviation appears for f2−heavy. In this function, due to its high-

computational intensity a strong reduction of the configurations where sequential eval-

uation is the most suitable option is observed. Only very small configurations, up to

16×16, are suitable for sequential evaluation. When increasing the problem size, the

evaluation becomes more suitable for GPU in all cases. Moreover, since f2−heavy is

more computationally intensive than f2−light, the penalization of data transfer between

CPU and GPU is largely counteracted by the faster evaluation of the population.

Considering only the GPU implementations, two dominance areas appear in the

plot1 (Fig. 4.7). In the inner one, the most suitable strategy is S3, whereas in the outer

1In the original implementation, SVM is only available for binary classification. Although there
exist multiclass SVM implementations, in this work two simple and consecutive binary classifications

60

4.5 Effect of Data Layout on GPU Evaluation Time

0 1000 2000 3000 4000 5000 6000 7000 8000
Population

0

1000

2000

3000

4000

5000

6000

7000

8000

Di
m

en
si

on

LinearSVM applied to f2-light function results.

Figure 4.6: LinearSVM applied to the results of f2−light function: the two data cate-
gories correspond to sequential evaluation for small and mid-size configurations, and S4
for large configurations. The support vectors for the first class (sequential evaluation) are
4,000×1,000 and 1,000×4,000; whereas for the second class (S4) is 4,000×4,000.

0 100 200 300 400 500 600 700 800
Population

0

100

200

300

400

500

600

700

800

Di
m

en
si

on

LinearSVM applied to f2-heavy function results.

Figure 4.7: LinearSVM applied to the results of f2−heavy function: the three data cat-
egories correspond to sequential evaluation for smaller configurations, later when incre-
menting the problem size the best strategy becomes the S3 one, and finally S4 for larger
configurations. The support vectors for the first class (sequential evaluation) are 16×16,
and 20×20 for the lowest configuration of the second class (S3). This second class has as
support vectors: from 20×20 to 100×400 and 400×100 for the largest configurations. And
finally, for the third class (S4) the support vector is 400×400.

are executed with two consecutive classes.

61

GPU/figures/f2-light.eps
GPU/figures/f2-heavy-3zonas.eps

4. GPU COMPUTING

is S4. Therefore, LinearSVM for f2−heavy presents three optimal strategies depending

on the configuration. For the very small problem sizes the most suitable strategy is

sequential evaluation, being the support vector 16×16. When increasing the problem

size, the most suitable strategy becomes S3. In this case the support vector is 20×20
for the lowest configuration. On the other hand, S3 is the best strategy for a wide

range of problem sizes. This class comprises from 20×20 to 100×400 and 400×100 as

support vectors. For larger problem sizes (400×400 and larger ones) the most suitable

strategy is S4.

All the functions tested until this point coincide granting a relevant role to the com-

putational charge in order to be worthwhile the GPU-based evaluation. An intensive

computational charge can be reached through an increment of the problem size, or by

using fitness functions with high-computational intensity. The necessary threshold to be

worthwhile a GPU-based evaluation can be reached with small configurations (20×20)
for very expensive functions (f2−heavy), or with very large problem sizes (4,000×4,000)
for inexpensive functions (f2−light). In all the cases, S4 becomes the most suitable

strategy when dealing with a high computational charge.

4.5.3.3 F4-Light and F4-Heavy

In order to characterize the behaviour of the evaluation time of non-separable func-

tions, the f2−light and f2−heavy are modified by incrementing the number of necessary

dimensions to calculate each partial fitness value. With this modification an increment

of the computational intensity over the functions is applied.

In Eq. 4.6 and Eq. 4.7 the new functions are presented. They are very similar to

the functions used in the previous section but with more terms involved to calculate

any partial fitness values. This modification puts an extra pressure over the on-chip

memory consumption for the GPU-strategies. More resources have to be allocated in

order to hold the extra variables.

With these new functions, the general tendency of the evaluation time of the non-

separable functions is fully characterized. Decision-making about the most suitable

layout for functions with similar morphology is eased with this broad study.

Similarly to f2−light, for f4−light (Fig. 4.8) the most suitable strategy for small and

mid-size problems is a sequential evaluation. Only for very large problem sizes (larger

than 1,000×1,000 or 500×8,000) GPU-based evaluation (S4) becomes the most suitable

choice.

Due to the higher computational intensity of f4−light compared with f2−light, the

area dominated by sequential evaluation shrinks. Whereas the support vectors for

sequential evaluation in f2−light are 1,000×4,000 and 4,000×1,000, for f4−light are

62

4.5 Effect of Data Layout on GPU Evaluation Time

0 1000 2000 3000 4000 5000 6000 7000 8000
Population

0

1000

2000

3000

4000

5000

6000

7000

8000

Di
m

en
si

on

LinearSVM applied to f4-light function results.

Figure 4.8: LinearSVM applied to the results of f4−light function: the two data cate-
gories correspond to sequential evaluation for small and mid-size configurations, and S4
for large configurations. The support vectors for the first class (sequential evaluation) are:
500×8,000 and 1,000×1,000; whereas for the second class (S4) is 1,000×4,000.

1,000×1,000 and 500×8,000. In conclusion, for lower configurations in f4−light than

in f2−light, the penalization of data transfer between CPU and GPU is balanced by a

faster evaluation of a more expensive function.

The observed trend of reduction of dominant CPU-based evaluation between f2−light

and f4−light is accentuated when comparing f2−heavy and f4−heavy (Fig. 4.9). When

increasing the computational intensity of the expensive versions of the fitness function

by adding more terms, the GPU-based evaluation area enlarges at the same time that

the suitable problem sizes for sequential evaluation shrink.

In f4−heavy, sequential evaluation is the fastest choice only for 10×10 configuration,

whereas a slightly larger configuration, as 16×16 becomes faster when evaluating on

GPU with S3 strategy. In f2−heavy, for 16×16 the best choice is still CPU-based

evaluation.

More comparisons between f2−heavy and f4−heavy show a similar pattern in both

cases (Fig. 4.7 and Fig. 4.9). For low problem sizes, sequential evaluation is the

fastest choice. However, due to the high-computational intensity of the function, any

increment in the problem size carries out a switch from this choice to GPU-based

evaluation choice.

When the problem reaches a size of 16×16, S3 becomes the most suitable strategy

up to a size of 200×200. For larger problem sizes, the most suitable strategy is S4. As

can be appreciated this pattern reproduces the schema of f2−heavy with a constriction

63

GPU/figures/f4-light.eps

4. GPU COMPUTING

0 100 200 300 400 500 600 700 800
Population

0

100

200

300

400

500

600

700

800
Di

m
en

si
on

LinearSVM applied to f4-heavy function results.

Figure 4.9: LinearSVM applied to the results of – f4−heavy function: the three data cate-
gories correspond to sequential evaluation for tiny configurations, later when incrementing
the problem size the best strategy becomes the S3 one, and finally S4 for larger configu-
rations. The support vector for the first class (sequential evaluation) is 10×10. For the
second class (S3) are 16×16 for the lowest configuration and 200×200 for the largest one.
Finally, for the third class (S4) are: 100×400 and 800×200

towards the lower problem sizes of the dominance areas of sequential and S3 strategy.

S4 strategy is the fastest choice as much as the computational intensity of the function

grows. For configurations such as: 100×400 or 800×200, and larger ones, S4 is the best

option.

The tendency provides clues about the behaviour of the problem when progres-

sively reducing the computational intensity of the fitness function: S3 dominance area

disappears, while sequential and S4 strategies fill the previous S3 area.

Other remarkable result is the critical role of the coalesced access in the perfor-

mance in all functions analysed. In the strategies where it is implemented, S3 and S4,

they outperform the strategies where it is not implemented. The results suggest that

coalesced access to global memory should be a major requirement in the design of evo-

lutionary algorithms on GPU. Therefore, it can be stated that this option is mandatory

to obtain an efficient implementation.

Furthermore, comparing with f2−heavy, the pressure exerted in f4−heavy by the

higher on-chip memory consumption produces a shared memory depletion for lower

problem sizes in S2 strategy, as well as it happened in S3. Therefore, the experiments

have demonstrated that implementations based on registers are more robust for very

large problem sizes than others based on shared memory.

64

GPU/figures/f4-heavy-3zonas.eps

4.5 Effect of Data Layout on GPU Evaluation Time

0 200 400 600 800 1000
Population

0

200

400

600

800

1000

Di
m

en
si

on

LinearSVM applied to Rana function results.

Figure 4.10: LinearSVM applied to the results of Rana function: the three data categories
correspond to sequential evaluation for smaller configurations, later when incrementing the
problem size the best strategy becomes the S3 one, and finally S4 for larger configurations.
The support vectors for the first class (sequential evaluation) are 20×20, and 40×40 for
the lowest configuration of the second class (S3). This second class has as support vectors:
from 40×40 to 200×200 for the largest configurations. And finally, for the third class (S4)
the support vector is 100×400 and 800×200.

4.5.3.4 Rana Function

Up to this point the proposed strategies have been tested against diverse non-separable

functions. The SVM plots presented have a predictable capacity for other configurations

of these particular fitness functions. However, this information is valuable not only for

the functions already analysed, but also to predict the behaviour of the best strategies

for other non-previously tested functions. To test the capacity of forecasting the best

strategy to evaluate an arbitrary non-separable fitness function, the Rana function (Eq.

4.3) is used as benchmark.

Rana function has a computational intensity closer to the previous expensive func-

tions than to the light ones. Therefore, depending on the problem size, three best

strategies are expected: for the lowest range of problem sizes, sequential evaluation

will be the most suitable strategy, for mid-range will be S3 strategy, and finally, S4

strategy will be the most suitable for the upper-range of problem sizes. In Fig. 4.10

the LinearSVM digesting the numerical results of Rana Function are shown. As can be

appreciated the foreseen schema is roughly reproduced.

The results presented for fRana (Fig. 4.10) reproduce the schema of f4−heavy rather

than f2−heavy. Therefore, from the computational point of view fRana is close to

65

GPU/figures/fRana.eps

4. GPU COMPUTING

f4−heavy. There are not differences for the support vectors of the largest suitable

configuration for S3 (200×200), as well as for the lowest suitable configuration for

S4 (100×400 and 800×200). However, there exist some differences in the largest suit-

able configuration for sequential evaluation: 20×20 for Rana function and 10×10 for

f4−heavy.

The fitting between the prediction and the numerical experiments is good enough

to adopt it as predictive rule for other non-separable functions.

4.6 Conclusions

The works performed in this chapter have permitted an in-depth comprehension of the

capacities of the GPU computing paradigm to accelerate evolutionary algorithms.

From the adaptation of the PSO algorithm to the most suitable layout to accelerate

the evaluation of fitness functions, these developments have evolved in parallel to the

maturity of the GPU computing paradigm and the capacities of CUDA language. By

profiting of these capacities, more and more efficient implementations for evaluating

fitness functions on GPU have been produced.

66

Chapter 5

Application of Evolutionary

Algorithms to Astrophysics

Problems

5.1 Introduction

T
he increment in the complexity of the data accessible in Astronomy, Astrophysics

and Cosmology requires new procedures for their analysis. Evolutionary algo-

rithms can provide to the practitioners the tools for analysing large and complex data

sets, and by allowing the extraction of synthetic knowledge from large pieces of infor-

mation. Works related with two astronomical problems have been developed in this

area: the adjustment of rotational curves of spiral galaxy and the adjustment of the

observational low-resolution spectral energy distribution. On the EAs side, the prob-

lems studied cover from the sensitiveness of the EAs to the choice of the RNG, to the

reduction of the processing time in metaoptimization problems.

5.1.1 Rotational Curves of Spiral Galaxy

The rotation curve of a galaxy is defined as the relationship between the rotational

velocity of stars as function of the radial distance to the galaxy centre. The relevance

of this problem stems from the discrepancy between the observed velocity of the stars

and the Newtonian-Keplerian prediction, in such way that masses derived from the

rotational kinematics and gravitational laws do not match. Nowadays, this discrep-

ancy is explained by the presence of dark matter, which is not emitting light. As a

consequence, the characterization of rotation curve in spiral galaxies is a measure of

the amount of dark matter in the galaxy.

67

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Dark energy and dark matter have never directly been observed, and their nature

remains unknown. Understanding the nature of the dark matter and the dark energy

is one of the most important challenges of the current cosmology studies.

The velocity of the stars is characterized by an equation with physical meaning

describing the four mass contributions to the rotation curve —bulge, disk, interstellar

gas and halo— (Eq. 5.1).

v2(r) = v2D(r) + v2B(r) + v2H(r) + v2G(r) (5.1)

Except for the halo, the other three contributions are merged in a variable, whereas

the halo contribution is modelled by Eq. 5.2. Therefore, the number of parameters to

adjust is three: v2D + v2B + v2G, σ, and α .

v2H(r) = 2 · σ2 · (1−
(r

α

)

· arctang
(α

r

)

) (5.2)

5.1.2 Low-Resolution Galaxy Spectral Energy Distribution

The modelling techniques of spectra presently used in Astronomy and Cosmology are

based on Single Stellar Populations1 (SSP). The idea is to model a given galactic spec-

trum as a combination of spectra of SSPs defined by their different ages and metal-

licities2. Since the age and metallicity of the all components are obtained, it is also

possible to determine the star formation and the enrichment histories of the galaxy or

of the galaxy region. Due to the advances in the observed spectra, nowadays the re-

searchers have a huge volume of accessible high-quality data. Theoretical stellar models

have also greatly improved, mimicking to the real stellar evolution. At the same time,

the fossil record methods based on spectral synthesis techniques, very demanded in the

community to analyse, when possible automatically, the galaxy spectra, have emerged

and matured in the last decade [21, 23, 58, 97].

5.2 Related Work

5.2.1 Related Work for the Fitting of the Rotational Curves of Spiral

Galaxy

In the bibliographic search, few related studies have been found. It exists an old

work which has inspired partially this survey. In this work, the author uses a genetic

1Simple Stellar Population consists of a set of stars born at the same time and having the same
initial element composition.

2Metallicity (Z) is the proportion in mass of chemical elements without taking into account H and
He, H+He+Z=1

68

5.2 Related Work

algorithm to adjust the observational data of the spiral galaxy NGC 6946 [19]. Equation

5.2 is used for describing the four mass contributions to the rotation curve —bulge, disk,

interstellar gas and halo— (Eq. 5.1).

5.2.2 Related Work for the Fitting of the Low-Resolution Galaxy

Spectral Energy Distribution

Although it exists a wide list of works where the use of evolutionary computing is

applied to problems in the area of Astronomy and Cosmology, cases where evolution-

ary algorithms are applied to the fitting of the low-resolution galaxy spectral energy

distribution based on simple stellar populations have not been found in the literature.

By observing the techniques employed to adjust the galaxy spectra, the closest ex-

ample is the use of an heuristic for the fitting process [20]. In that work, the exploration

of the parameter space is made by a Metropolis algorithm. However, more differences

exist between the mentioned and the present work than the simple change of an heuris-

tic by an evolutionary algorithm. In [20] the complete emission spectrum is used in the

adjustment process, whereas in the present work only 5 wavelengths —from 3650 Å to

8600 Å– are employed. This makes the fitting process essentially different.

5.2.3 Related Work for the Metaoptimization of Differential Evolu-

tion by Using Productions of Low-Number of Cycles.

Diverse works have examined aspects of parameter tuning in Evolutionary Algorithms.

Early in the bibliography, the drawback associated with the large execution time in the

parameter tuning is reported. In one of the pioneer studies in metaoptimization [60], it

was already stated the large computational cost as limiting factor in metaoptimization

processes.

A very popular strategy to overcome the large execution times of metaoptimization

is Racing [56]. The aim of this strategy is to reduce the number of tests to estimate the

utility of a behavioural parameters set. After an initial phase where all sets are equally

estimated, the algorithm separates good and poor configurations, for later focussing on

good ones by incrementing their number of evaluations.

The Racing strategy has suffered from modifications aimed to accelerate the dis-

crimination of poor solutions. The variants differ on the criteria used to sift the poor

configurations. For example, it can be mentioned: the use of a Gaussian distribution

centred at the current best candidate to generate the next generation [102]; or F-Race

where the Friedman test is used to promote or discard the candidates into the next

69

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

iteration. F-Race has been applied to Ant Colony Optimization for traveling sales-

man problem [11] and to iterated local search and simulated annealing for timetabling

problem [10].

Other attempt of DE metaoptimization is presented at [73]. In this work, a suite

of twelve fitness functions (separable and non-separable) are used as benchmark. The

differences emerge in the general approach of the problem. In [73] the metaoptimization

of DE is monolithic for the whole suite: the behavioural parameters are tuned for the

suite; whereas in our work each case is treated independently. Finally, this work also

underlines the disadvantage associated to the large execution time when evaluating the

benchmark suite for the highest dimensionality (100 dimensions).

Finally, a review of the approaches for tuning the behavioural parameters of meta-

heuristics is presented in [10]. The review begins with the drawbacks of the trial-and-

error approach, passing by a methodology based on factorial design; and finishing with

F-Race approach. The time-consumption disadvantage when applying metaoptimiza-

tion to industrial problems is also underlined. Other review of methods for parameter

tuning can be found at [91]. Unfortunately, this work focusses only on one single

separable function (Rastrigin function), which prevents any comparison process.

5.3 Application of Evolutionary Algorithm to Rotational

Curves

5.3.1 Sensitiveness of Evolutionary Algorithms to the Choice of the

Random Number Generator: Rotational Curves of Spiral Galax-

ies as Case Study

There are numerous scientific and technical disciplines which use random number se-

quences in their simulations. These disciplines are concerned about the randomness of

the Random Number Generator (RNGs) employed. Fortunately, RNGs have become

so close to real random number sequences that certain computational experiments are

unable to distinguish between real and computational-generated random number se-

quences [12].

As soon as newer and longer period RNGs appear, articles studing the effect of its

choice in the final performance of optimization problems are published. In spite of the

continuous update of state-of-the-art, the majority of these publications use artificial

problems.

These artificial problems are simplifications of more complex real problems. There-

fore, the conclusions drawn in these studies should be put in quarantine and they should

not be extrapolated to real problems.

70

5.3 Application of Evolutionary Algorithm to Rotational Curves

In this study, a real problem —the fitting of observational data sets to a theoretical

curve— is used in order to check the sensitiveness of several EAs to the choice of the

RNG. The observational data sets employed are the orbital velocity of stars for four

spiral galaxies: NGC2460, NGC3370, NGC4800 and NGC5394.

The data sets provide a variety of scenarios: measures with big errors and others

with small ones, galaxies with a lot of points and other with very few ones, and, galaxies

where the two arms fit the same curve and others where strong differences between the

two arms have been observed.

For the theoretical curve, diverse series expansions are tested. Finally, a Legendre-

polynomial serial expansion is selected due to its better adjustment to the experimental

data sets.

Two RNGs (Mersenne Twister and GCC rand()) (section 2.2.3) have been used to

test their impact over the final performance of three EAs: Particle Swarm Algorithm

(PSO), Differential Evolution (DE) and Genetic Algorithm (GA). The two RNGs have

been selected based on two criteria:

• The RNG has to be frequently used in research papers.

• The RNG has to be considered as high quality.

RNGs and the suites for testing their properties have hardly evolved in the last

years. The most stringent suites for checking the randomness allow separating good

RNGs from others. However, the validation of these tests does not suffice to deduce

that all the RNGs will produce similar performances when coupling to EAs.

5.3.1.1 Production Setup

In order to check the sensitiveness of EAs to the choice of the RNG, the adjustment

of observational data to a series has been used. The data correspond to the orbital

velocity of stars around the centre of the galaxy.

As polynomial series, diverse series expansions are initially tested: Legendre, Bessel

and polynomial series expansion. Legendre series obtains the best results reproducing

better the experimental data sets. For the series expansion two degree of expansion

—10 and 20— are employed. This parameter marks the dimensionality of the problem.

The rest of the configuration used in this work is: 10 particles/individuals as population

size and 1,000 cycles/generations.

In the PSO implementation, the c1 and c2 constants are established as c1 = c2 = 1

and the maximum velocity of particles Vmax = 2. In the DE implementation, the

mutation rate is established as µ = 0.5 and the recombination rate as Cr = 0.5. In

71

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

the GA implementation, the mutation rate is established as pm = 0.01. An one-point

crossover operator is also implemented. From a randomly selected point in the two

parents, two descendants are created by mixing the parents genetic information. The

two best ones from the two parents and the two descendants are retained. Elitism is

not implemented in the GA.

According to the usual practice in adjustment of experimental data to theoretical

curve, the chi-square test —χ2—- has been chosen as fitness function within this work

[67]. The lower the χ2 value is, the closer the solution is to the objective —the fitter the

experimental data is to the theoretical curve. Therefore, the task becomes minimizing

χ2.

Considering the standard fitting problem, where one is given a discrete set of N data

points with associated measured errors σ, and is asked to construct the best possible fit

to these data using a specific functional form, the most appropriated fitness function is

the merit function χ2, Eq. 5.3 [80]. Therefore, independently of the specific functional

form chosen, the fitness function used in this work is χ2, Eq. 5.3.

χ2 =
∑

all points

(
ysimulated − yobserved

σ
)2 (5.3)

For each case —each EA, galaxy rotation curve and polynomial degree— a total of

25 tries are executed in order to reach the statistical relevance desired.

In Fig. 5.1, the four galaxy rotation curves used in this work are shown. Particularly,

these galaxy rotation curves are extracted from a larger astronomical data set, covering

56 galaxies. The criteria to select these curves were: the largest and the smallest data

set, and two more randomly selected.

As can be appreciated the data are very diverse, providing different scenarios: curve

with many points —more than 200— and with few points —less than 20—, big and

small errors, duplicated values for the same x-axis coordinate —corresponding to the

two arms of the spiral galaxy—. This diversity makes the task of adjustment very

challenging and stressing; and providing different scenarios to test the EAs coupled to

the RNGs.

In order to fit the points (Fig. 5.1) to a theoretical curve, a series expansion of

Legendre Polynomial is used (Eq. 5.4). In this series expansion the unknown terms ai

have to be calculated to obtain the better adjust of function F (x) to the points.

F (x) =
N
∑

i=0

ai · LPi(x) (5.4)

72

5.3 Application of Evolutionary Algorithm to Rotational Curves

0 1 2 3 4 5
Radius (Kpc)

�50

0

50

100

150

200

250
V

e
lo

ci
ty

 (
K

m
/s

)

Orbital Velocity Curve for n2460 Galaxy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Radius (Kpc)

40

60

80

100

120

140

160

180

200

V
e
lo

ci
ty

 (
K

m
/s

)

Orbital Velocity Curve for n4800 Galaxy

0 2 4 6 8 10
Radius (Kpc)

0

20

40

60

80

100

120

140

160

V
e
lo

ci
ty

 (
K

m
/s

)

Orbital Velocity Curve for n3370 Galaxy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Radius (Kpc)

�10

0

10

20

30

40

50

60

70

80

V
e
lo

ci
ty

 (
K

m
/s

)

Orbital Velocity Curve for n5394 Galaxy

Figure 5.1: Galaxy rotation curves —experimental data sets— used in this survey:
NGC2460, NGC4800, NGC3370 and NGC5394.

5.3.1.2 Results and Analysis

The most appropriated statistical test to assess the impact of the choice of the RNG

over final performance of the EAs is the Wilcoxon signed-rank test. This is a non-

parametric test used for statistical inference. In Table 5.1, the p-value of Wilcoxon

signed-rank test for each EA, galaxy and polynomial degree is presented. In our study,

the analysis of the sensitiveness of the EAs is based on these values. The significance

level used has been α = 0.05, which is the most usual in this kind of analysis.

When changing the RNG in the PSO algorithm, null hypothesis —H0 : µ1 = µ2—

can be rejected only in one case —NGC2460 and degree 10—. This is the single case

where the PSO algorithm shows sensitiveness to the change of the RNG. By contrast,

for the rest of the cases —a total of 7— the null hypothesis can not be rejected. For

these cases the change of RNG has not any impact over the final performance of PSO.

Regarding the results of Wilcoxon signed-rank test for DE, the null hypothesis can

be also rejected in a single case —NGC2460 and degree 20—. For the rest of the cases

—a total of 7— the null hypothesis can not be rejected.

Finally for GA, the null hypothesis can not be rejected in any case. Therefore, the

statement H0 : µ1 = µ2 has to be accepted as true; leading to the conclusion that the

73

Astro/figures/curvarot_n2460.eps
Astro/figures/curvarot_n4800.eps
Astro/figures/curvarot_n3370.eps
Astro/figures/curvarot_n5394.eps

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Table 5.1: p-value from Wilcoxon signed-rank test for non-parametric hypothesis testing
for each evolutionary algorithm, galaxy and expansion degree.

Evolutionary
Algorithm

Galaxy and Polynomial Degree
NGC2460 NGC3370 NGC4800 NGC5394
10 20 10 20 10 20 10 20

PSO 0.026 0.367 0.288 0.925 0.757 0.657 0.158 0.276

DE 0.443 0.040 0.098 0.638 0.619 0.135 0.058 0.946

GA 0.065 0.619 0.638 0.861 0.545 0.638 0.946 0.109

change of the RNG does not have any impact over the final performance of the GA.

Based on the non-parametric analysis performed, it can be concluded that the choice

of the RNG has not any impact —for GA— or a very small impact —for PSO and

DE— over the final performance of the problems treated in this section. Unfortunately,

the Wilcoxon signed-rank test does not allow establishing conclusions about which

particular RNG produces best performance when it is coupled to a EA, only if the

results differ or not.

The analysis of the results allows building a scale of sensitiveness for the EAs tested:

DE = PSO > GA. This scale coincides partially with the scale created with the

work [15], in which only artificial functions were employed. In this work the scale of

sensitiveness obtained was: DE > GA > PSO > FA. As can be appreciated, in

both studies DE is the most sensitive algorithm to the choice of the RNG. Oppositely,

both surveys alternate the positions in the scale of GA and PSO.

In order to evaluate if the EAs perform better when using a particular RNG, the

sign test has been employed. For testingH0 : MNC ≥MMT againstH1 : MNC < MMT ,

H0 is rejected if the number of plus signs is less than or equal to the critical value for

this test. Taking into account that the number of tests is 25, the critical value is 7.

When applying this, only one rejection is produced —PSO, NGC2460 and degree 10—.

Therefore, only for this case, the algorithm performs better when using MT rather

than NC can be stated. For the other case —DE, NGC2460 and degree 20—, the null

hypothesis can not be rejected.

In Figs. 5.2, 5.3, 5.4 and 5.5 the best adjustments obtained for each case are

presented. As observed in these figures, in most of the cases both curves well-conform

the observational data, so the simple observation of them does not allow discerning

if the RNGs differ in performance when coupling to different EAs. This endorses the

results obtained by the Wilcoxon signed-rank test disabling in most of the cases to

discern between both RNGs.

74

5.3 Application of Evolutionary Algorithm to Rotational Curves

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�100

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_Poly10_MT

PSO_Poly10_NC

(a) PSO, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL10_MT

DE_PL10_NC

(b) DE, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL10_MT

GA_PL10_NC

(c) GA, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�150

�100

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_Poly20_MT

PSO_Poly20_NC

(d) PSO, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL20_MT

DE_PL20_NC

(e) DE, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL20_MT

GA_PL20_NC

(f) GA, 20 degrees

Figure 5.2: Comparison of the best adjustment obtained with the RNG tested for galaxy
NGC2460.

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_PL10_MT

PSO_PL10_NC

(a) PSO, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

0

20

40

60

80

100

120

140

160

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL10_MT

DE_PL10_NC

(b) DE, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

0

20

40

60

80

100

120

140

160

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL10_MT

GA_PL10_NC

(c) GA, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

	100

	50

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_PL20_MT

PSO_PL20_NC

(d) PSO, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

0

20

40

60

80

100

120

140

160

180

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL20_MT

DE_PL20_NC

(e) DE, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

50

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL20_MT

GA_PL20_NC

(f) GA, 20 degrees

Figure 5.3: Comparison of the best adjustment obtained with the RNG tested for galaxy
NGC3370.

75

Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL10_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL10_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL10_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL20_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL20_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL20_n2460.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL10_n3370.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL10_n3370.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL10_n3370.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL20_n3370.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL20_n3370.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL20_n3370.eps

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_Poly10_MT

PSO_Poly10_NC

(a) PSO, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

40

60

80

100

120

140

160

180

200

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL10_MT

DE_PL10_NC

(b) DE, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL10_MT

GA_PL10_NC

(c) GA, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�50

0

50

100

150

200

250

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_Poly20_MT

PSO_Poly20_NC

(d) PSO, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

40

60

80

100

120

140

160

180

200

220

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL20_MT

DE_PL20_NC

(e) DE, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

50

0

50

100

150

200

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL20_MT

GA_PL20_NC

(f) GA, 20 degrees

Figure 5.4: Comparison of the best adjustment obtained with the RNG tested for galaxy
NGC4800.

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�10

0

10

20

30

40

50

60

70

80

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_PL10_MT

PSO_PL10_NC

(a) PSO, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�20

0

20

40

60

80

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL10_MT

DE_PL10_NC

(b) DE, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�20

0

20

40

60

80

100

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL10_MT

GA_PL10_NC

(c) GA, 10 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�10

0

10

20

30

40

50

60

70

80

V
e
lo

ci
ty

 (
K

m
/s

)

PSO_PL20_MT

PSO_PL20_NC

(d) PSO, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�40

�20

0

20

40

60

80

V
e
lo

ci
ty

 (
K

m
/s

)

DE_PL20_MT

DE_PL20_NC

(e) DE, 20 degrees

0.0 0.2 0.4 0.6 0.8 1.0
Radius (Kpc)

�20

0

20

40

60

80

100

V
e
lo

ci
ty

 (
K

m
/s

)

GA_PL20_MT

GA_PL20_NC

(f) GA, 20 degrees

Figure 5.5: Comparison of the best adjustment obtained with the RNG tested for galaxy
NGC5394.

76

Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL10_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL10_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL10_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL20_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL20_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL20_n4800.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL10_n5394.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL10_n5394.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL10_n5394.eps
Astro/figures/FitterResult-Rot_Gax_comparative_PSO_PL20_n5394.eps
Astro/figures/FitterResult-Rot_Gax_comparative_DE_PL20_n5394.eps
Astro/figures/FitterResult-Rot_Gax_comparative_GA_PL20_n5394.eps

5.3 Application of Evolutionary Algorithm to Rotational Curves

5.3.2 Adjustment of Rotational Curves of Spiral Galaxy to Specific

Functional Forms Using Particle Swarm Algorithm and Differ-

ential Evolution

This section focusses on the construction of a model for the rotational curves of spiral

galaxies. For this, the observational data are normalized and merged, and next, fitted

to physical meaningless functional forms. Due to the large search space, EAs are used

to find sub-optimal high-quality solutions. PSO and DE are implemented to adjust

a large observational data set —56 rotational curves of spiral galaxies— to functional

forms.

PSO and DE are well-known EAs, widely adopted and suitable for the first ap-

proximation to any optimization problem. Regarding the functional form, Legendre

polynomial and normal polynomial are considered to reproduce the essential informa-

tion of the rotational curves.

5.3.2.1 Production Setup

Diverse serial expansions (Legendre and polynomial) are tested to fit the observational

data to the theoretical physical-meaningless curve. In spite of the equal a priori capac-

ity, the Legendre polynomial —50 degrees in all serial expansions— serial expansion

showed a major sensitiveness to reproduce the data behaviour and produced the lowest

values of the fitness function.

Similarly to other studies in this chapter, the chi-square test (Eq. 5.3) has been

selected as fitness function.

For each case —each EA and type of polynomial— a total of 25 tests are executed

in order to reach the desired statistical relevance. As pseudorandom number generator,

a subroutine based on Mersenne Twister has been used [59].

In order to fairly compare the curves of the galaxies, a double normalization has

been applied. First of all, the size of the galaxies has to be homogenized. For this

normalization, the radius where the maximum velocity is reached, is settled —in arbi-

trary units— at 0.1 units. Consequently, all the radii measured for the galaxy under

modification are conveniently scaled.

Second of all, the maximum velocity of each galaxy is settled at 1 —in arbitrary

units—-. As a consequence, the rest of measured velocities are also appropriately

scaled. Finally, resulting of the scaling in velocities, the velocity error must be rescaled

proportionately to the velocity associated.

As result of this double normalization, all the curves have a common coordinate

at (0.1, 1). Once the normalization process has proceeded, the extraction of a pattern

77

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Figure 5.6: All rotation curves doubly normalized.

representing all the curves can be executed. In Fig. 5.6 the complete observational

data set is presented. Particularly, the galaxy rotation curves used in this work cover

56 galaxies, being involved a total of 5051 points [57].

5.3.2.2 Results and Analysis

It is well known in evolutionary computing that it is not possible to know a priori which

EA will perform the best for a particular problem. For this reason, the optimization

problems are treated with a variety of techniques, retaining the best ones for further

improvements.

In Fig. 5.7(a), the comparative box plots of the best results for the algorithms PSO

and DE when using Legendre series are presented. As can be appreciated the PSO

algorithm outperforms DE, in both: the absolute best result obtained after the 25 test,

as well as the median of the samples. Therefore, the use of DE will be rejected for this

problem.

The application of the Wilcoxon signed-rank test to the data shown in Fig. 5.7(a)

indicates that the differences are significant from the statistical point of view for α =

0.05.

In Fig. 5.7(b), the evolution of the best result for each case studied is presented.

In this figure, the evolution of PSO with Legendre polynomial can distinguish from the

other cases by the rapid evolution during the first thousand generations. However, for

78

Astro/figures/AllRotGalCurvesNormalized_fig1_gris.eps

5.3 Application of Evolutionary Algorithm to Rotational Curves

PSO DE
Evolutionary Algorithm

106

107

108

109

B
e
st

 R
e
su

lt

(a) Comparative box plots

0 1000 2000 3000 4000 5000
Generation

106

107

108

109

1010

Fi
tn

e
ss

PSO - Legendre
PSO - Normal Polynomial
DE - Legendre

(b) Fitness evolution

Figure 5.7: Panel (a) shows the comparative box plots for the best results obtained for
PSO and DE algorithms when using Legendre series, while panel (b) shows the fitness
evolution for the best result of each case studied

the second half the fitness evolution stagnates. The other two algorithms show a lower

ability to evolve along the generations.

Finally, in Fig. 5.8, the fittest solution to the observational data is presented. In

the range [0, 0.2], where the bulk of data is concentrated, the adjustment is acceptable.

However, far of this segment and due to the lack of data, the adjustment produced is

far from the optimum.

5.3.3 Metaoptimization of Differential Evolution by Using Produc-

tions of Low-Number of Cycles: the Fitting of Rotation Curves

of Spiral Galaxies as Case Study

In order to increase the efficiency of EAs, practitioners include improvements such as

new operators, modifications of the canonical operators, or the hybridization with other

EAs. However, an alternative to obtain high-quality solutions is: to tune the parame-

ters which govern the behaviour of the algorithm to the specific problem to optimize.

This parameters adjustment can be performed by using other EAs (metaoptimization).

Unfortunately, metaoptimization leads to a critical increment in the execution time.

During the development of metaheuristics techniques, the optimizers require to fix

the values of diverse behavioural parameters. In general, these parameters govern the

behaviour of the algorithms, and therefore, they are key elements in its final efficiency.

In the past, approaches based on the factorial design have been followed to opti-

mize the behavioural parameters. However, this procedure oversimplifies the problem,

neglecting the potential relationships between the behavioural parameters. Neither,

by-hand selection of the most suitable set of parameters is an affordable task.

79

Astro/figures/CardenasMontes_fig2_left.eps
Astro/figures/CardenasMontes_fig2_right.eps

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Figure 5.8: Absolute best result —the fittest adjustment to observational data— ob-
tained. Configuration used PSO with configuration of 100 particles and 5,000 cycles, and
a series of Legendre Polynomials of 50 degrees.

As any other complex problem, the adjustment of the behavioural parameters of

an EA can be treated by other EA, termed metaoptimizer or tuner. This kind of

optimization is termed metaoptimization.

Unfortunately, the metaoptimization carries out a relevant increment of the execu-

tion time. If the problem to optimize takes long, a high-number of cycles or a large

population are required to obtain high-quality solutions, then the scenario aggravates.

Therefore, it is necessary to evaluate if a lower number of cycles in the optimizer pro-

duces behavioural parameters of enough quality for the problem, and consequently,

processing time can be saved; although this low-number of cycles of the optimizer is

not producing so-high-quality solutions.

If the behavioural parameters used in the optimizer (algorithm which is optimized)

exhibit its quality from the very initial cycles, then large executions can be avoided.

Moreover, the number of cycles of the optimizer is a control mechanism over the exe-

cution time budget and, indirectly over the quality of the solutions of the tuner.

Particularly, this section focuses on tuning the behavioural parameters of DE [81,

92]. This election is based on the popularity of the algorithm, frequently used in

optimization in artificial functions and real-world problems.

80

Astro/figures/RotGal_BestResult.eps

5.3 Application of Evolutionary Algorithm to Rotational Curves

5.3.3.1 Implementation

In order to deal with a whole evolutionary algorithm, a python implementation is

proposed for the tuner. Python election is based on its capacity to handle pieces of

text, to compose files with these pieces, then to compile the source code, to execute

it and to capture output information from the execution. By repeating this process,

the behavioural parameters of the optimizer can evolve. In our work, both tuner and

optimizer implement DE algorithm.

On the other hand, the EA which parameters are being optimized is codified in C

language. C language election is based on the need of a fast execution for the problem

under optimization. Additionally to the cited benefit, this different codification eases

the identification of each part of the code while codifying.

One of the critical points of the metaoptimizer part is to capture the final fitness

of the EA to be recorded as the fitness of the metaoptimizer individual. For this,

the best fitness is recorded in a text file after executing the problem and captured by

python from this file. So, synchronization operations during the writing and reading

are required.

Both DE algorithms (tuner and optimizer) [81, 92] have been implemented with

the schema DE/rand/1/bin [64]. Furthermore, in all numerical experiments, the con-

figuration in the tuner is a population of 10 vectors and 10 cycles. Otherwise, in the

optimizer, the population is composed by 10 vectors; and two configurations for the

number of cycles: 10 and 1,000. In all cases, real-valued representation is used. The

behavioural parameters of the tuner are fixed with values µ = CR = 0.5.

As pseudorandom number generator, a subroutine based on Mersenne Twister [59]

has been used in both implementations: python and C. The numerical experiments are

executed in a single core of a computer with two Intel Xeon X5570 processors at 2.93

GHz and 8 GB of RAM. The C code has been compiled by using gcc version 4.4.5 with

optimization level -O3.

5.3.3.2 Metaoptimization Production

In order to check the hypothesis of the capacity of the tuner to produce competitive

behavioural parameters by using a reduced number of cycles (10) in the optimizer, a

production composed of 25 executions is performed per case. Later, these behavioural

parameters are compared with the behavioural parameters emerged from a production

with high-number of cycles (1,000).

After each execution of DE tuner, a couple of values (µ, CR) are obtained as tuned

behavioural parameters for the problem under optimization (Fig. 5.9). Additionally

81

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

to the scatter plot µ−CR, at top and at right of each figure, the histograms with the

frequency of each value are also plotted.

As can be appreciated, most of the tuned parameters are located in the upper-right

quadrant. These results are slightly different, but congruent with the recommendation

(µ = 0.8 and CR = 0.9) of Prof. Storn1 for the schema DE/rand/1/bin; although

the original recommendation is stated for artificial separable functions. Next, the mid-

point of the most populated division is employed to decide about the most suitable

behavioural parameters (µ, CR) for the problem to optimize (Table 5.2).

By observing the values obtained for µ and CR (Fig. 5.9), it is appreciated the

similarities in the values, independently of the number of cycles of the optimizer. This

reinforces the hypothesis that the quality of the behavioural parameters can be ex-

tracted from the few initial cycles. The most suitable values for NGC2460 and 10

cycles are µ = CR = 0.95 (Fig. 5.9(a)), whereas for 1,000 cycles are µ = 0.75 and

CR = 0.65 (Fig. 5.9(b)). For the galaxy NGC3370, the most suitable values for low-

number of cycles are µ = 0.95 and CR = 0.85 (Fig. 5.9(c)), whereas for high-number

of cycles2 are µ = 0.95 and CR = 0.75 (Fig. 5.9(d)).

The next step is to verify if the efficiency of each set of behavioural parameters is

significantly different.

5.3.3.3 Fitness Analysis

In order to discriminate if the tuned behavioural parameters of DE are more efficient

when the tuning process has been performed with 10 or with 1,000 cycles; 25 runs of

the optimizer are executed per case (Table 5.2).

Concerning the numerical results for the galaxy NGC2460, it can be observed that

the tuned parameters with low-number of cycles (µ = CR = 0.95) outperform the

tuned parameters with high-number of cycles (µ = 0.75, CR = 0.65) when both exe-

cuting 1,000 cycles. For the galaxy NGC3370, the same comparison leads to both cases:

low-number (µ = 0.95, CR = 0.85) and high-number (µ = 0.95, CR = 0.75) of cycles

produce the identical mean fitness. As expected, whatever tuned behavioural parame-

ters, independently of the number of cycles, outperform randomly selected behavioural

parameters (µ = CR = 0.5).

From the proposed experimental setup and the numerical results, it can be con-

cluded that a reduction in the number of cycles of optimizer, at least, does not degrade

1http://www1.icsi.berkeley.edu/˜storn/code.html
2In the previous cases —galaxy and number of cycles— the mid-point of the most populated division

is selected to establish the most suitable values of µ and CR. However for the galaxy NGC3370 and
1,000 cycles configuration, neither division is populated with more than 2 points. Therefore, the most
populated bin in the histogram is used as criterion to select the suitable behavioural parameters.

82

5.3 Application of Evolutionary Algorithm to Rotational Curves

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

C
R

0
2
4
6
8
10
12
14
16
18

0 2 4 6 8 10

(a) NGC2460, 10 cycles

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

C
R

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8

(b) NGC2460, 1,000 cycles

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

C
R

0
2
4
6
8
10
12
14
16

0 2 4 6 8 10

(c) NGC3370, 10 cycles

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

C
R

0
1
2
3
4
5
6
7

0 1 2 3 4 5

(d) NGC3370, 1,000 cycles

Figure 5.9: Results (µ and CR) of metaoptimizer after 25 executions for galaxies:
NGC2460 and NGC3370, and for 10 and 1,000 cycles. Top and right: the histogram
of the frequency of the values of the behavioural parameters.

83

Astro/figures/n2460_C10_muCR.eps
Astro/figures/n2460_C1000_muCR.eps
Astro/figures/n3370_C10_muCR.eps
Astro/figures/n3370_C1000_muCR.eps

5
.
A
P
P
L
IC

A
T
IO

N
O
F

E
V
O
L
U
T
IO

N
A
R
Y

A
L
G
O
R
IT

H
M

S
T
O

A
S
T
R
O
P
H
Y
S
IC

S
P
R
O
B
L
E
M

S

Table 5.2: Best fitness (25 executions) for each galaxy and case. The numerical results labelled with: random have been obtained
with µ = CR = 0.5, those labelled with optimized by using µ and CR optimized with 10 or with 1,000 cycles. The numerical results
without label correspond to the cases where µ and CR have been optimized with 10 cycles and the runs executed with 1,000 cycles.

Galaxy µ CR Cycles Mean fitness Comment Statistical Test (p-value)

NGC2460

0.50 0.50 10 57,518.6±16,848.4 Random Wilcoxon signed-rank

1.2 · 10−50.95 0.95 10 2,938.3±1,966.7 Optimized
0.50 0.50 1,000 1,247.4±630.3 Random

Kruskal-Wallis
2.8 · 10−120.95 0.95 1,000 314.5±1.14e-13

0.75 0.65 1,000 375.2±222.1 Optimized

NGC3370

0.50 0.50 10 353,444.0±61,195.0 Random Wilcoxon signed-rank

1.1 · 10−50.95 0.85 10 28,741.8±16,472.1 Optimized
0.50 0.50 1,000 11,613.7±6,472.7 Random

Kruskal-Wallis
9.7 · 10−140.95 0.85 1,000 2,873.9±4e-13

0.95 0.75 1,000 2,873.9±4e-13 Optimized

84

5.3 Application of Evolutionary Algorithm to Rotational Curves

Table 5.3: Mean execution time of both tuner and optimizer for 10 and 1,000 cycles in
the optimizer.

Galaxy Cycles Execution Time Cycles Execution Time Reduction

Optimizer

NGC2460 10 6.56 ms 1,000 412.24 ms 98.4%

NGC3370 10 12.24 ms 1,000 654.12 ms 98.1%

Tuner

NGC2460 10 17.41 s 1,000 86.58 s 79.9%

NGC3370 10 18.23 s 1,000 146.10 s 87.5%

the quality of the behavioural parameters obtained in the metaoptimization process.

Based only on the initial cycles of the optimizer, the tuner is able to capture enough

information about the quality of the behavioural parameters to evaluate them.

5.3.3.4 Statistical Analysis

In order to check if the differences in the fitness (Table 5.2), when using behavioural

parameters tuned with low-number and high-number of cycles in the optimizer, are

significant, this production is statistically analysed.

The statistical analysis of data is performed by using Kruskal-Wallis test for multiple

comparisons, and Wilcoxon signed-rank test for pair comparison. In all cases, non-

parametric tests have been chosen because they do not require explicit conditions for

data distribution.

Except for the case of NGC3370, 1,000 cycles and the two sets of tuned behavioural

parameters —where identical numerical results are obtained—, the Kruskal-Wallis and

Wilcoxon signed-rank tests indicate that the differences for the numerical results are

significant for a confidence level of 95% (p-value under 0.05). This means that the

differences are unlikely to have occurred by chance with a probability of 95%.

5.3.3.5 Execution Time

In the previous points, the analysis focussed on the values achieved by the tuned be-

havioural parameters of DE and on the numerical results obtained with these values. It

has been proved that metaoptimization based on optimization process with low-number

of cycles can produce high-quality behavioural parameters for DE algorithm. Once the

numerical efficiency of the approach has been checked, the corresponding processing

times are presented (Table 5.3).

85

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

As can be appreciated, Table 5.3 shows a significant reduction of the execution

times for both: tuner and optimizer when a low-number of cycles are employed in the

optimizer. The execution time reduction is higher than 98% for the optimizer, while

ranging from 79.9% to 87.5% for the tuner.

Through optimizing behavioural parameters in this scenario, a saving of processing

time is achieved, at the same time that high-quality solutions are produced. This is

specially relevant for industrial applications where execution the time is as relevant as

the fitness; and for the cases where an optimization process is applied successively to

different data sets. By varying the number of cycles in the optimizer, the metaopti-

mization process is endowed of a control over the quality of the achieved solutions and

over the processing time budget.

5.4 Metaheuristics for Modelling Low-Resolution Galaxy

Spectral Energy Distribution

In the present section, the adjustment of the observational low-resolution Spectral

Energy Distribution (SED, Oλ) of M110 galaxy to a set of SSPs is implemented and

tested. Beyond of this immediate goal, the final purpose is to create and deliver to the

community a code able to fit the SED of a galaxy using predefined SSPs.

Integral Field Units (IFU) facilities will enlarge the complexity of the problem since

a complete spectrum will be produced per pixel of the image of the galaxy, instead of

a single spectrum for the whole image of the galaxy. For this purpose, diverse EAs are

tested against the problem in order to find the most suitable one. Therefore, the scope

of this work is far from this particular galaxy; being this one simply used as benchmark

to test the approach. The evolutionary algorithms tested in this work are: Genetic

Algorithm (GA), Particle Swarm Optimizer (PSO) and some variants: Inertial Weight

PSO (IWPSO), and MeanPSO; and Differential Evolution (DE).

The low resolution spectra for the galaxy M110 given by the magnitudes in several

broad band filters1 are used as input to the code. The fit will try to obtain the best

combination of two stellar populations given by SSPs able to reproduce these data.

The SSPs broad-band filter magnitudes are taken from the results of the evolutionary

synthesis code PopStar [66], with which a set of models have been calculated for 6

different metallicities, Z, in the range [0.0001, 0.05], and 106 different stellar logarithmic

1Data have been extracted from NASA/IPAC Extragalactic Database;
http://ned.ipac.caltech.edu/. These quantities have not necessarily been corrected for background
extinction. This might introduce uncertainties which make difficult the fitting process.

86

5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy
Distribution

ages ranging from 5.00 to 10.18. The final sample of SSPs employed consists in a set

of 636 theoretical models.

By using SSP mechanism, some implicit considerations are usually assumed about

the creation and evolution of the stars in the galaxy. In elliptical and spheroidal galaxies

the conversion of an amount of gas in a set of stars is considered a very rapid process,

and this way only two (or even one) SSPs may be valid to reproduce their spectra.

Although this model can seem simple to describe correctly the spectrum of a galaxy —

Oλ—, it is useful enough to show the general tendency of the galaxy, and therefore, to

understand its evolutionary history.

5.4.1 Structure of the Candidate Solutions

By considering that the objective of this work involves the fitting of observational galaxy

spectrum and, that this objective requires to weight the SSPs through coefficients

representing the amount of stellar masses of the selected SSPs, the first step is to

propose an adequate structure for the candidate solutions.

The structure of the proposed candidate solutions is composed by a sum of terms

(Eq. 5.5), where each term has two factors:

Oλ =
∑

types of SSPs

Ci · SSP[Z,logage] (5.5)

• The first one is the amount of stars —measured in solar masses— of a particular

SSP, Ci.

• Whereas, the second factor is the SSP itself. The spectrum of the SSP depends

on two features of the stars: the age and the metallicity.

In adopting this structure for the solutions, two different types of optimizations have

to be performed. On the one hand, the selection of the most suitable SSPs from the set

of the SSPs constitutes a combinatorial optimization problem. On the other hand, the

optimization of the weight previously mentioned constitutes a continuous optimization

problem. Due to the nature of the problem and the structure of the candidate solutions,

both optimizations should not be untied. This double faced problem makes the fitting

process challenging and appropriate to hybridize different evolutionary techniques.

5.4.2 Results and Analysis

5.4.2.1 Mutation Operator for SSP

As first attempt, a GA —only with a mutation operator active— is implemented. GA

holds numerous advantages, such as: flexibility and adaptability to many different types

87

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Table 5.4: Mean fitness and deviation standard for 1,000 cycles 10 individuals and diverse
mutation ratios when using only mutation operator over SSPs.

Mutation Ratio 0.01 0.05 0.10

Mean Fitness 14.3±39.4 0.8±0.7 7.8±14.2

0 5000 10000 15000 20000 25000

Lambda
107

108

109

M110
M110 Sim

(a) Observed and simulated SED

0 5000 10000 15000 20000 25000

Lambda
8

10

12

14

16

18

20

22

24

R
e
si

d
u
a
l,
 %

(b) Residual (relative error) between the observed
SED and the simulated one.

Figure 5.10: Results when applying the mutation operator only to the SSPs.

of problem. Moreover, the reduced number of parameters and the low complexity of

the GA allow a quick implementation in order to obtain in a short period of time the

first tentative solutions.

Initially, the GA is applied to the combinatorial part of the problem —the selection

of the SSPs—. In this part of the problem, the SSPs of the candidate solutions change,

being governed this modification by a mutation ratio. The mutation operator randomly

replaces one of the two SSPs which compose the candidate solution, by other randomly

selected SSP. If the muted individual is better than the ascendant, then the ascendant is

replaced by the muted individual; otherwise, the ascendant is kept and the descendant

rejected. This simple mechanism allows a selection of the most suitable SSPs for a

particular galaxy spectrum.

The results of this first strategy —when implementing a mutation ratios: 0.01,

0.05, and 0.10— are presented at Table 5.4. Although these results are promising for

an initial attempt, the dispersion (deviation standard) is too much high. To have a low

dispersion when repeating execution is considered as a valuable feature. Beyond the

numerical results, the objective is to reproduce the SED of M110. For this reason, the

observed and simulated SEDs for M110 galaxy are presented at Fig. 5.10(a).

88

Astro/figures/OriginalySimulado_MutedOnly_M110.eps
Astro/figures/Residuals_MutedOnly_M110.eps

5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy
Distribution

In order to understand the goodness of the final results produced by the algorithm,

a comparison between the observed SED of the galaxy M110, and the modelled SED

by the final best individual of each execution is performed (Fig. 5.10). As can be

observed the fitting of the SED for M110 is not optimum (Fig. 5.10(a)). This initial

strategy is able to reproduce only the general tendency of the observed SED, however

it still overestimates or underestimates some values. The relative differences, (100 ×
SEDM100

−SEDsim

SEDM100), reach up to 25% (Fig. 5.10(b)). Besides it is perceived the difficulty

to fit values ranging up to 2 orders of magnitude. It is expected that more elaborated

strategies will produce better adjustments between the SED observed and modelled.

Better values of the fitness: lower mean and standard deviation, are expected when

finding more suitable metaheuristics.

5.4.2.2 Mutation Operator for Coefficients

Beyond the initial approach focussed on the combinatorial part of the problem, an

additional mutation operator is implemented for the coefficients, Ci. Until now the

algorithm keeps frozen the coefficients1 from the initial generation and along the whole

execution. This impedes the evolution of the stellar mass of a selected SSP in the

galaxy. By implementing this new operator, the algorithm will be able to make them

evolve. It is expected that this new mechanism improves the overall performance of

the algorithm; overcoming the inherent flaws of the first approach.

In order to keep the same number of evaluations in the algorithm and fairly compare

with the previous implementation, the number of cycles is reduced to the half2. This

is due that in each cycle the mutation operator over the SSP selection is applied and

evaluated, and next, the mutation operator over the coefficients is also applied and

evaluated. Consequently, the number of evaluations per cycle is the double that in the

previous implementation.

Two variants of the mutation operator for the coefficients have been tested. Firstly,

a flat mutation probability distribution in which the mutation ratio is fixed as identical

to the mutation ratio for SSPs; and secondly, a Gaussian probability distribution in

which the mean and the standard deviation of the probability distribution is calculated

over the coefficient values in each generation (Table 5.5).

The application of mutation operators to make evolve the coefficients of the can-

didate solutions improves significantly the best results obtained until now (Table 5.5).

However, better solutions (lower standard deviation and mean fitness) are expected if

1These coefficients are randomly created at the beginning of the algorithm.
2Hereafter, when two EA are hybridized, a similar reduction in the number of cycles is applied in

order to keep constant the number of evaluations.

89

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Table 5.5: Mean fitness and standard deviation for 1,000 cycles, 10 individuals and diverse
mutation ratios when using mutation operator over SSPs selection and over the coefficients.

Mutation Ratio 0.01 0.05 0.10

Flat Mutation Operator

Mean Fitness 110.2±334.1 0.27±0.06 0.25±0.03
Gaussian Mutation Operator

Mean Fitness 16.1±33.9 0.33±0.11 0.25±0.05

more refinements are applied. Therefore, other evolutionary algorithms are tested in

the followings.

5.4.2.3 PSO for Coefficients

In order to check efficiency of other evolutionary algorithms, PSO is tested for optimiz-

ing the coefficients. Besides the standard PSO implementation, two variants are also

checked: MeanPSO and IWPSO. The production includes the three algorithms: PSO,

MeanPSO and IWPSO; three maximum velocities: 107, 108, and 109, the parameters

c1 = c2 = 1; and three mutation ratios for the SSPs: 0.01, 0.05 and 0.10. Unfortu-

nately, the numerical results do not improve the previous results (mutation operator

applied to the SSPs selection and to the coefficients), and for this reason, they have

been omitted.

5.4.2.4 Differential Evolution for Coefficients

DE is other EA specially suitable for optimization of continuous problems, and it has

a large portfolio of cases where it outperforms both GA and PSO. For this reason, it

is considered to optimize the continuous part of the candidate solutions, Ci. In this

case, DE follows the schema DE/rand/1/bin with µ = CR = 0.5. The main features

of this algorithm are its flexibility to deal with many different types of problems, and

the speed in the implementation and in the execution, which allows quickly obtaining

high-quality suboptimal solutions.

First of all, the numerical results of the DE algorithm (Table 5.6) are compared

with the results obtained in the previous best implementations (Table 5.5). As can

be observed, the DE algorithm outperforms the previous best implementation, i.e.

mutation operator acting over the SSPs selection and Gaussian mutation operator

over the coefficients. By comparing, it can be concluded that the hybridization of

the mutation operator acting over the SSPs with the DE algorithm acting over the

90

5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy
Distribution

coefficients (stellar masses) produces better results than any of the previous strategies

tested. As an extra value, a low standard deviation is also achieved.

Table 5.6: Mean fitness and standard deviation for 1,000 cycles, 10 individuals and
diverse mutation ratios when using mutation operator over SSPs selection and DE over the
coefficients.

Mutation Ratio 0.01 0.05 0.10

Mean Fitness 0.32±0.19 0.24±0.03 0.226±0.009

The application of the Kruskal-Wallis test, p−value = 8.6 ·10−6 to these results in-

dicates that the differences between the medians are significant1. The post-hoc analysis

with the Wilcoxon signed-rank test with the Bonferroni correction shows that the differ-

ences between the cases with mutation ratio 0.01 and 0.05, p−value = 0.0049, are signif-

icant; whereas between the cases with mutation ratio 0.05 and 0.10, p−value = 0.0926,

the differences are not significant.

Finally, in Fig. 5.11 the goodness of the numerical results are compared with the

observed SED of the galaxy M110. By comparing Fig. 5.10 and Fig. 5.11, it can be

appreciated the improvement in the fitting with the observational results. Considering

that the data have not been corrected for background extinction, the adjustment can

be considered as adequate for this phase of the work.

0 5000 10000 15000 20000 25000

Lambda
107

108

109

M110
M110 Sim

(a) Observed and simulated SED

0 5000 10000 15000 20000 25000

Lambda
0

5

10

15

20

R
e
si

d
u
a
l,
 %

(b) Residual (relative error) between the
observed SED and the simulated SED.

Figure 5.11: Results when applying the mutation operator to the SSPs and DE to the
coefficients.

1A confidence level of 95% (p-value under 0.05) is used in this analysis. This means that the
differences are unlikely to have occurred by chance with a probability of 95%.

91

Astro/figures/OriginalySimulado_Muted_DE_M110.eps
Astro/figures/Residuals_Muted_DE_M110.eps

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

5.4.2.5 Larger Number of Cycles

Until now the efforts have focussed on selecting the best EAs to produce high-quality

suboptimal solutions. For comparison purposes, all the previous studies have been

performed with 103 cycles. If the two SSPs obtained with the best solution of each

execution are presented, a plot with some dispersion around the optimal SSPs appears

(Fig. 5.12(a)). As much as the number of cycles grows up, a reduction of the dispersion

is expected (Fig. 5.12). Progressively, for 104 cycles (Fig. 5.12(b)) and for 105 cycles

(Fig. 5.12(c)), the dispersion diminishes but still it is appreciated. For 106 cycles, the

plot has reduced significantly the dispersion until an acceptable limit (Fig. 5.12(d));

whereas for 107 cycles the scatter pattern completely disappears (Fig. 5.12(e)).

Furthermore, the increment in the number of cycles produces an improvement in

the mean fitness (Table 5.7), as well as a reduction of the dispersion. This leads to

select 106 cycles as an appropriate figure, which produces a low mean and standard

deviation fitness, while keeping a limited processing time.

Table 5.7: Mean fitness and standard deviation from 103 to 107 cycles and 10 individuals,
when using mutation operator over SSPs and DE over the coefficients.

Cycles Mean Fitness

103 0.226±0.009
104 0.209±0.006
105 0.199±0.003
106 0.19548±0.00013
107 0.19535±0.00003

Alternatively, the dispersion can be analysed by clustering the points around cen-

tres. For clustering, k-means algorithm is used in this work [40]. The evolution of

the coordinates of the two centres generated by k-means is presented at Table 5.8. It

should be underlined that these centres might not coincide with a specific SSP. As can

be appreciated, no evolution of the centres is produced when executing more than 105.

Therefore, from the two last studies, it can be concluded that a number of cycles in the

range from 105 to 106 seems appropriate to balance efficiency in the numerical solutions

and a reduced processing time.

92

5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy
Distribution

−10 −8 −6 −4 −2 0
log(Z)

5

6

7

8

9

10

11

lo
g(
a
ge

)

0
5
10
15
20
25

0 2 4 6 81012141618

(a) 1K cycles

−10 −8 −6 −4 −2 0
log(Z)

5

6

7

8

9

10

11

lo
g(
a
ge

)

0
5
10
15
20
25

0 2 4 6 810121416

(b) 10K cycles

−10 −8 −6 −4 −2 0
log(Z)

5

6

7

8

9

10

11

lo
g(
a
ge

)

0
5
10
15
20
25
30

0 5 10 15 20 25

(c) 100K cycles

−10 −8 −6 −4 −2 0
log(Z)

5

6

7

8

9

10

11

lo
g(
a
ge

)

0
5
10
15
20
25

0 5 10 15 20 25

(d) 1M cycles

−10 −8 −6 −4 −2 0
log(Z)

5

6

7

8

9

10

11

lo
g(
a
ge

)

0
5
10
15
20
25

0 5 10 15 20 25

(e) 10M cycles

Figure 5.12: Scatter plots and histograms of SSPs (2 per solution) solutions (25 solutions)
when applying the mutation operator to the SSPs selection and DE to the coefficients.

93

Astro/figures/Componentes_muted0.05_DEmu0.5CR0.5_C1k_P10_Mix2.eps
Astro/figures/Componentes_muted0.05_DEmu0.5CR0.5_C10k_P10_Mix2.eps
Astro/figures/Componentes_muted0.05_DEmu0.5CR0.5_C100k_P10_Mix2.eps
Astro/figures/Componentes_muted0.05_DEmu0.5CR0.5_C1M_P10_Mix2.eps
Astro/figures/Componentes_muted0.05_DEmu0.5CR0.5_C10M_P10_Mix2.eps

5. APPLICATION OF EVOLUTIONARY ALGORITHMS TO
ASTROPHYSICS PROBLEMS

Table 5.8: Centres of the two clusters created by k-means algorithm for cycles from 103

to 107 and 10 individuals, when using mutation operator over SSPs selection and DE over
the coefficients.

Cycles (log(Z), log(age))

103 (-7.82, 9.52), (-3.00, 9.00)

104 (-5.52, 9.54), (-3.00, 8.94)

105, 106, 107 (-5.52, 9.95), (-3.00, 9.00)

5.5 Conclusions

The use of metaheuristics in the search of solutions for complex problems has allowed

obtaining synthetic solutions from astrophysical problems when dealing with large data

sets. The studies performed with rotational curves of spiral galaxies and the modelling

of the low-resolution galaxy spectral energy distribution have proved the capacity of

the evolutionary algorithms to solve this kind of problems.

Besides the astrophysical problems have served as benchmarks for other issues in

evolutionary computing. They have been employed as real-world problems for testing

the sensitiveness of the evolutionary algorithms to the choice of the random number

generator, and as a test for reducing the processing time in metaoptimization processes.

94

Chapter 6

Application of GPU Computing

to Astrophysics Problems

6.1 Introduction

R
ecent progresses in observational cosmology have led to the development of the

ΛCDM (Lambda Cold Dark Matter) model [35]. It describes a large amount of

independent observations with a reduced number of free parameters. However, the

model predicts that the energy density of the Universe is dominated by two unknown

and mysterious components: the dark matter and the dark energy. These two compo-

nents constitute the 96% of the total matter-energy density of the Universe.

Dark energy and dark matter have never directly been observed, and their nature

remains unknown. Understanding the nature of the dark matter and the dark energy

is one of the most important challenges of the current cosmology studies1.

In most of the cases, the functions employed in the study of the dark matter dis-

tribution are computationally intensive. Taking into account that the astronomical

surveys expected for the forthcoming years (Dark Energy Survey [1], the Kilo-Degree

Survey [47] or Euclid [3, 54]) will enlarge from dozens of thousands up to hundreds

of million galaxies and the number of accessible samples will also increase, then any

improvement in the performance will be helpful to ameliorate the analysis capacity.

6.1.1 The Two-Point Angular Correlation Function

The distribution of galaxies in the Universe is one of the main probes of the ΛCDM

cosmological model. One of the most important observable to study the statistical

1The quantification of the budget between ordinary and dark components in the Universe is a major
issue as proven by the recognition of the Science magazine in 1998 and 2003 as ”Scientific Breakthrough
of the Year”.

95

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

properties of this distribution is the Two-Point Angular Correlation Function (2PACF

hereafter), which is a measure of the excess of probability, relative to a random distri-

bution, of finding two galaxies separated by a given angular distance. By comparing

different results in the correlation functions, implicit comparisons between cosmological

models are made.

The 2PACF, ω(θ), is a measure of the excess or lack of probability of finding a pair

of galaxies under a certain angle with respect to a random distribution. In general,

estimators 2PACF are built combining the following quantities (histograms):

• DD(θ) is the number of pairs of galaxies for a given angle θ chosen from the data

catalogue D.

• RR(θ) is the number of pairs of galaxies for a given angle θ chosen from the

random catalogue R.

• DR(θ) is the number of pairs of galaxies for a given angle θ taking one galaxy

from the data catalogue D and another from the random catalogue R.

Although diverse estimators for 2PACF do exist, the estimator proposed by Landy

and Szalay [52], (Eq. 6.1), is the most widely used by cosmologists due to its minimum

variance.

ω(θ) =

(

Nrandom

Nreal

)2

· DD(θ)

RR(θ)
− 2 · Nrandom

Nreal

· DR(θ)

RR(θ)
+ 1 (6.1)

In Eq. 6.1, Nreal and Nrandom are the number of galaxies in the data and random

catalogues respectively.

A positive value of ω(θ) —estimator of 2PACF— indicates that galaxies are more

frequently found at angular separation of θ than expected for a randomly distributed set

of galaxies. On the contrary, when ω(θ) is negative, a lack of galaxies in this particular

θ is found. Consequently ω(θ) = 0 means that the distribution of galaxies is purely

random.

The calculation of 2PACF implies computing the angle among all pairs in a sample

of N galaxies. As a consequence, the complexity of the calculation is O(N2).

6.1.2 The Three-Point Angular Correlation Function

The three-point angular correlation function (3PACF), ζ(θ), is similar to the 2PACF

but involving three galaxies instead of two. This modification increases the compu-

96

6.1 Introduction

tational complexity to O(N3). In this case, the most accepted estimator is the one

proposed by [93] (Eq. 6.2).

ζ(θ) =

(

Nrandom

Nreal

)3

·DDD

RRR
− 3 ·

(

Nrandom

Nreal

)2

·DDR

RRR
+ 3 ·Nrandom

Nreal

·DRR

RRR
− 1 (6.2)

where

• DDD(θ1θ2θ3) denotes the number of triplets of galaxies for a given set of an-

gles θ1θ2θ3, where the three galaxies are selected from the observational data

catalogue, D.

• RRR(θ1θ2θ3) denotes the number of triplets of galaxies for a given set of angles

θ1θ2θ3, where the three galaxies are selected from the random data catalogue, R.

• DDR(θ1θ2θ3) andDRR(θ1θ2θ3) are similar to the previous ones taking two galax-

ies from one catalogue and the third one from the other catalogue.

6.1.3 The Shear-Shear Correlation Function

Cosmological information, such as dark matter distribution at different epochs, the

amount of matter and the expansion history, is contained in the so-called shear-shear

correlation function.

A thorough review on the topic of gravitational lensing can be found here [6]. The

value of the shear field γ can be conveniently estimated from the ellipticity, ǫ, of a

particular galaxy. Here |ǫ| is defined as such that an ellipse with axes a < b :

|ǫ| = b− a

a+ b
(6.3)

Given that each galaxy has an orientation φ with respect to the local coordinate

frame, two ellipticity components can be defined.

ǫ = ǫx + iǫy = |ǫ|e2iφ (6.4)

The correlation function of these ellipticities, as a function of the separation angle

between galaxies, encodes cosmological information about the mass distribution at

different redshifts, see [50] for a recent interpretation of the shear correlation function.

In reality, we need to extract shear fields averaging the ellipticities of many galaxies in

every region. Just the computational problem of calculating the correlation functions

is addressed here by assuming that the ellipticity ǫ has been measured to the best of

our ability. The actual measurement of the shear from galaxy ellipticities is beyond

97

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Figure 6.1: Angles and coordinates on a sphere for two galaxies i = (1,2) located at
(αi,δi). Figure taken from [50], used with the author’s permission.

the scope of this Thesis. The reader can consult [9] and [44] for a detailed explanation

of systematic effects and the steps for the extraction of shear from observations. In

the rest of the document the shear notation and not the ellipticity notation is used,

assuming that this process has already taken place.

The great circle distance θ between two galaxies i=(1,2), necessary for the correla-

tion function binning, is calculated using the position vectors of both on a unit sphere,

which are obtained from its spherical sky coordinates αi,δi.

~vi = (cosαi · cos δi, sinαi · cos δi, sin δi) (6.5)

cos(θ) = ~v1 · ~v2 (6.6)

The shear at a particular galaxy position is defined in a local Cartesian coordinate

system with the y-axis pointing towards the north pole and the x-axis going along the

line of constant declination in a plane tangent to the sphere at the galaxy’s position.

Given a pair of galaxies (1, 2), γt1 is the tangential projection of the shear of galaxy 1

along the geodesic that connects galaxy 1 and 2, and γ×1
is the cross component. To be

able to calculate these shear components, the angle β1 (see Figure 6.1) must be known,

this is the angle between the great circle at declination δ and the right ascension of the

galaxy α1. Then the angle (known as the course angle) that we need to use to project

is given by Φ1 = π/2− β1. Using the sine and cosine rules on a sphere the calculation

is done as follows:

98

Astro/figures/./Coordinates_fullsky.eps

6.2 Related Work

cosΦ1 =
sin(α2 − α1) cos δ2

sin θ

sinΦ1 =
cos δ2 sin δ1 − sin δ2 cos δ1 cos(α2 − α1)

sin θ
(6.7)

The corresponding angle for Φ2 can be found by exchanging the indices.

After projecting the measured shears (γx,γy) to (γt,γ×), the following correlation

functions can be defined:

ξ+(θ) =

∑

ij wiwj(γt(θi) · γt(θj) + γ×(θi) · γ×(θj))
∑

ij wiwj

ξ−(θ) =

∑

ij wiwj(γt(θi) · γt(θj)− γ×(θi) · γ×(θj))
∑

ij wiwj

ξ×(θ) =

∑

ij wiwj(γt(θi) · γ×(θj))
∑

ij wiwj
(6.8)

where wi,j are the weights associated to the measurement of galaxy ellipticity. These

take into account measurement errors, see [43]. These are the three correlation functions

that are calculated by the code.

6.2 Related Work

6.2.1 Related Work for the Two-Point Angular Correlation Function

The previous efforts done in the acceleration of the analysis of the distribution of

galaxies can be classified in two categories. On the one hand, it can be mentioned

the implementations of the 2PACF problem into more powerful computing platforms:

FPGA [51], GPU [5, 84]. And, on the other hand, it can be cited the use of some

tricky mechanism to reduce the complexity of the calculation without losing too much

accuracy, i.e. k-trees [68] or pixelization [29].

Comparing with [84], the implementation of the kernel proposed in this Thesis is

more compact —fewer number of lines—, and more versatile —easily adaptable to the

study of other range of angles—. Whereas in [84] a water-fall-if-elseif structure is the

core of the assignation of the angular coincidences to the bin, in our implementation

is the atomicAdd() function. The water-fall-if-elseif structure implies less flexibility to

modifications to the angular range of the supported histogram as well as diminishing

the readability of the kernel due to the larger number of code-lines, making the code

less compact.

99

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Some more points in common appear in [5], such as: use of atomicAdd() function,

and allocation of sub-histogram in shared memory; although also presents differences:

no use of atomicAdd() for the final gathering of the sub-histograms in the final his-

togram. In this work, the gathering of the sub-histograms is done in two step, firstly

the sub-histograms are gathered in global memory, and later the results from global

memory are accumulated in CPU. This procedure stems from the division of the data

for transferring to the kernel. In this work, the data are segmented and analysed

by chunks, whereas in our implementation all the data are transferred and analysed

to the GPU without dividing into chunks. This publication appears latter than our

publications about the 2PACF.

Additionally, in [5] the aperture mass statistic is also calculated. This is an alter-

native approach to investigate the presence of dark matter.

6.2.2 Related Work for the Shear-Shear Correlation Function

Concerning the shear-shear correlation function, previous efforts implement some kind

of mechanism to reduce the computational cost of the point-to-point correlation esti-

mation, for example, the widely used ATHENA code1. This is a powerful tool based

on kd-trees [68], which allows controlling the precision of the estimation by means of a

parameter termed opening angle measured in radians (OA hereafter). This parameter

regulates the minimum angle at which two kd-trees nodes must ’see’ each other for the

full point-to-point correlation to be estimated. If the nodes are far away from each

other, an averaging of the values is performed and these averages are then correlated.

Smaller opening angles make the required block size smaller, the precision achieved is

higher at the expense of a higher execution time. A similar approach is used in [46].

6.2.3 Related Work for the Improvement in the Precision of His-

togram on GPU

A standard and essential reference for histogram construction on GPU is the white

paper from NVIDIA about this topic [76]. Although originally devoted to image pro-

cessing and data mining, finally it has served as a guide for many other scientific areas.

In this white paper, 64-bin and 256-bin histogram implementations are proposed and

evaluated. Nowadays, the hardware has evolved enough to allow for larger histogram

sizes.

1http://www2.iap.fr/users/kilbinge/athena/

100

6.2 Related Work

The proposed implementation [76] is the ”classical” one: per-block sub-histograms

on shared memory. In this approach, the sub-histograms are created on shared memory,

and later they are gathered on global memory to form the final histogram.

In this work, two more variants are proposed: per-thread and per-warp sub-histo-

grams. Depending on the architecture of the GPU, the histogram size and the data

size, these strategies might be a limiting factor in the performance and in the capacity

to contain without overflowing the counts in the bins (hereafter bin containment).

In [87], the authors claim two new efficient methods for histogram calculation on

GPU. This article uses the NVIDIA white paper as a starting point to propose improve-

ments. However, from the two implementations for histogram construction presented

in [76], the authors only cite the smallest one in capacity. In any case, this paper was

written when compute capacity was 1.0, and no atomic operations on shared memory

were available. Therefore, it can be considered an obsolete strategy.

In [86], other efficient implementation to compute image histogram on GPU is pro-

posed. Among other considerations about grey-scale image manipulation, the authors

make considerations about the precision and the bin containment. In this paper, an im-

plementation which is unable to accumulate more than 256 counts per bin is compared

with a new one. In order to mitigate the lack of containment, local histograms are

created. However, this new implementation introduces errors when accumulating more

than 2048 counts per bin. This is clearly insufficient for cosmological analysis such as:

2PACF, 3PACF and shear-shear correlation, as it will be later shown. Neither of these

implementations expose the use of atomic functions nor shared memory to enhance the

performance.

In the book [85], a very didactic and efficient implementation of per-block sub-

histogram on shared memory is described. This implementation presents great advan-

tages: it is easy to implement, widely applicable to many different disciplines, it has

a great performance and bin containment. This implementation seems inspired in the

per-block implementation of the white paper [76], but incorporating atomic functions

and using shared memory for storing the intermediate sub-histograms and, hence, for

improving the performance. This implementation has been used by the authors in pre-

vious works, such as: the analysis of the 2PACF [13, 17, 18, 77] and the shear-shear

analysis [14]; at the same time, it is employed for comparison purposes in the current

work.

In [39] a per-block sub-histogram implementation is proposed. The novelty of this

approach relies on the multiple sub-histograms which are embodied in a single thread

block. This approach is an extension of Nugteren et al. approach (1 sub-histogram per

thread block) [71] to include multiple sub-histograms per thread block. As a final result,

101

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

the implementation is a hybrid between per-warp and per-block sub-histogram imple-

mentations. Given that this implementation gathers the sub-histograms in the final

histogram on global memory, it will face difficulties with the largest number of counts

per bin attainable for some number-representations. On the other hand, it will suffer

from lack of precision when adding small and large numbers in float-representation.

The comparison between the methods proposed by Shams et al. [87] and by

Nugteren et al. [71] shows that the different application areas (data mining and image

processing) establish different requirements about the histogram size, larger for data

mining than for image processing. The input sizes are also different: 8-bits are enough

for image processing, whereas, 32-bits are typical in data mining. This restricts the

performance study towards different objectives than in cosmology, and therefore, it

forces to implement modifications.

In [71] two histogram implementations are proposed: a per-warp sub-histogram

and a per-thread sub-histogram. When processing images, a successful and simple

proposition to improve the performance is to shuffle the input data. This is useful for

real images, however, it does not affect when processing cosmological input data. In

real images, it is probable that close pixels will feed the same bin; and therefore, they

will generate collisions (sequential updates of the number of counts in the same bin).

Thus, this action will degrade the performance. However, for cosmological inputs, this

a priori knowledge of the data structure does not exist, except for the case that the

data has been previously ordered.

Neither of the mentioned approaches propose simultaneously modifications on both:

the kernel and the CPU-part of the code, nor profit from double-representation acces-

sible on the CPU-part of the code1. Furthermore, in all the previous implementations,

after constructing the sub-histograms they are gathered in the final histogram on the

GPU. However, in our implementation, the final gathering is performed on the CPU-

part benefiting of the double-representation to improve the bin containment. Addition-

ally, no considerations about the input size and how it impacts on the precision of the

final result are presented in the works mentioned in this section.

In contrast to image processing, cosmological analysis requires trigonometric cal-

culations before feeding the appropriate bin in the histogram. For this reason, perfor-

mance comparison between the mentioned works and the current work for cosmological

problems is not feasible.

Regarding the precision of floating point representation on GPU, a review of this

issue is presented at [99]. In this work the inexactnesses associated with the use of float

representation (operation accuracy and rounding), and how the programming affects

1AtomicAdd() is not available in double precision.

102

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

the final result is underlined. Furthermore, in [38] a complete description of the floating

point format and its weaknesses are fully described.

Concerning other cosmological studies, in [5] the authors present an alternative

approach to calculate the 2PACF. In the description of the implementation, the use of

integer-representation for the histogram (256 bins and logarithmic binning), as well as

the use of atomicAdd() function and shared memory for supporting the sub-histograms

are enlightened. Although, they express that the final aim is to be able to process up

to billions of galaxies with this code, the largest data set processed is composed of one

million of galaxies. From the description of the implementation, it can be stemmed that

similar difficulties for the bin containment as the float-based implementation will arise

when increasing the size of the data set. The lack of precision in this implementation

is mitigated because the data are processed in bunches, and then accumulated.

Other implementation of the 2PACF is presented in [84]. This is the most different

approach. It uses an array in double-representation to hold the histograms, however

it impedes to use atomicAdd() functions. Therefore, the selection of the bin has to

be done in an alternative manner. In this case, it is performed by a water-fall-if-elseif

structure. This strategy saves the problem of the lack of precision of other number-

representations, but it severely penalizes the performance of the application.

6.3 Application of GPU Computing to the Two-Point An-

gular Correlation Function

One of the main objectives of this work is to produce an implementation for the 2PACF

calculation, which can be executed on GPU hardware. The GPU election is based on

the capability to accelerate the execution as well as the low price of the hardware. This

makes high performance computing accessible for small-sized research groups.

6.3.1 GPU Implementation of 2PACF

First of all, the initial strategy for the GPU code pays special attention to the use of

shared memory. For this reason, the dot product and the arc-cosine calculation for each

pair of galaxies are implemented in this type of memory. This avoids the use of the

global memory —much slower than shared memory— for any intermediate calculation

which requires frequent read and write processes.

Other expected bottleneck is the construction of the histograms: DD(θ), RR(θ)

and DR(θ). Following the sequence of the commands in the kernel, until this point

a multithread calculation has operated over the pairs of galaxies, calculating the dot

product, next the arc-cosine and, finally, the bin in the histogram where an account

103

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

ought to be incremented. But, due to the multithreaded nature of the kernel, simulta-

neous updates of the same bin in the histogram must be avoided in order to do not miss

any count. This forces to use atomic functions to create the histogram or alternatively

water-fall-if-elseif structures.

The use of water-fall-if-elseif structures implies strong drawbacks. It is less flexi-

ble to changes in the range of angles of the histogram, and forces to recompile after

any modification. With implementing atomic functions, the range of angles for the

histogram can be introduced during the invocation.

Besides, the water-fall-if-elseif structures produce less compact kernels —larger

number of lines—, thus making more difficult the readiness of the code. By using

atomic functions instead water-fall-if-elseif structures reduces significantly the number

of lines of the code, so it eases its readiness and its maintenance.

The atomic functions for integers are supported by NVIDIA GPU for compute

capability 1.1 and higher in global memory ; and for compute capability 1.2 or higher

in shared memory [85]. In our case, the appropriate function is atomicAdd().

The use of atomic functions in global memory causes a major performance degrada-

tion. Therefore, the solution is to perform more atomic operations in parallel. For this

reason, an alternative strategy has been followed. Each block of threads implements

a histogram in shared memory ; and in these histograms, angles are binned in parallel.

Next, all shared-memory-built-histograms are reduced to a single one in global memory.

This strategy produces a parallel treatment of the most critical operation, being the

foundation of the success of the original GPU implementation.

On the other hand, the baseline code implements a coalesced pattern access to the

global memory. This is achieved by disposing the x-coordinates of all galaxies in a single

array, and similarly for y and z-coordinates. By implementing this data layout, adjacent

threads in a block request contiguous data from global memory. Coalesced access

maximizes global memory bandwidth usage by reducing the number of bus transactions.

Regarding the constrains, the histogram size is fixed at 64 degrees with 4 bins per

degree. This size is selected as a mean of he recommendations of the final users. Slight

variations on the histogram size or the data catalogues severely modify the overall

performance of the algorithm, difficulting the comparison with other works. Indirectly

this constrain eliminates the choice to optimize the code by reshaping the threadblock

size (aiming to maximize the occupancy).

6.3.2 Initial Results

In order to test the capacity of the GPU implementation to accelerate the 2PACF,

comparative tests are executed among CPU, GPU and multi-GPU —using 3 GPUs—

104

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

; and OpenMP, MPI and hybrid MPI-CUDA implementations. MPI and OpenMP

implementations are executed at Euler cluster (section 2.3.2).

In the study of the 2PACF, two input files coming from simulations have been

employed: MICE 0.35 (430,931 galaxies) and MICE 0.55 (654,094 galaxies)1.

The results of the comparisons among the implementations are presented at Table

6.1. The analysis of these results shows the excellent speedup obtained by the GPU im-

plementation —115.15±4.84— in opposition to the speedup obtained by the OpenMP

implementation —10.58±0.48—. It should be underlined that the GPU implementa-

tion is fast enough to be competitive, and for this reason, to be used by small research

groups lacking in more expensive equipment such as clusters or supercomputers.

Table 6.1: Mean execution time and speedup for CPU, GPU, Multi-GPU and OpenMP
implementations for the 2PACF.

Implementation Mean execution time (s) Speedup

CPU 35,186.327 ± 1,452.419

OpenMP 3,326.363 ± 28.498 10.580±0.478
GPU 305.570 ± 1.143 115.154±4.835

Multi-GPU (3 GPUs) 184.108 ± 2.127 191.174±8.897

Additionally to the previous implementations, an MPI one is also created and tested.

In Table 6.2, the execution time and the speedups of the MPI implementation are

shown.

As can be appreciated, the behaviour of the speedup is close to theoretical maximum

speedup for small and mid-sized configurations (up to 32 cores). As far as the number

of cores increases, the speedup deviates from the theoretical maximum obtaining a poor

performance. This degradation of the performance occurs because communication time

becomes relevant in comparison with computing time. Larger input files mitigate this

degradation by incrementing the computing time in comparison with communication

time. A similar effect will be observed later with the hybrid MPI-CUDA implementa-

tion (Table 6.3).

In any case, as the input size expected in the future is much higher that the sample

file employed in this work as benchmark, the severity of this effect will be drifted

towards larger number of nodes in both implementations.

1We acknowledge the use of data from the MICE simulations, publicly available at
http://www.ice.cat/mice.

105

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Table 6.2: Mean execution time and speedup for diverse numbers of cores in the MPI
implementation for the 2PACF.

Cores Mean execution time (s) Speedup

1 23,712.281 ± 145.690

2 11,652.683 ± 59.959 2.035 ± 0.014

4 6,327.005 ± 68.821 3.748 ± 0.047

8 3,162.222 ± 34.165 7.499 ± 0.084

16 1,577.899 ± 52.818 15.046 ± 0.562

32 799.457 ± 11.793 29.667 ± 0.455

64 403.937 ± 6.044 58.716 ± 0.965

128 205.008 ± 4.262 115.713 ± 2.423

256 104.040 ± 6.493 228.796 ± 14.210

512 71.292 ± 2.841 333.090 ± 12.301

Finally, taking into consideration the large input files expected (up to two orders of

magnitude larger than the sample used in this work), a hybrid MPI-CUDA implemen-

tation is also created to cope with those executions. It has to be underlined that even

the GPU implementation forecasts execution times of days for files of tens of millions

of galaxies.

In Table 6.3, the execution times for two input files MICE 0.35 and MICE 0.55 are

shown. This production has been executed on a cluster with 8 nodes, each one with

a M2050 card (section 2.3.3.2). The different sizes of files will allow comparing the

execution times when supplying different computational charge to each node.

The analysis of these results shows an excellent speedup in most of the cases, except

for the MICE 0.35 file when executing on 8 nodes. In this case the communication

time becomes relevant in comparison with the calculation time. Fortunately, this tiny

degradation of the performance will become irrelevant when handling files with tens of

millions of galaxies, as can be appreciated when analysing the file MICE 0.55. This

second file is, mildly speaking, a 50% larger than the MICE 0.35. As an example, the

comparative results for 8 nodes show a higher speedup for the analysis the file MICE

0.55 than for MICE 0.35. Essentially, for 8 nodes the execution time for each chunk in

the later case is relevant in comparison to the communication time, where as for larger

files is less relevant.

106

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

Table 6.3: Mean execution time (s) for the single precision MPI-CUDA implementation
of the 2PACF for 1, 2, 4, and 8 nodes for MICE 0.35 and MICE 0.55.

MICE 0.35 MICE 0.55

Nodes Execution Time Speedup Execution Time Speedup

1 301.473±0.232 711.702±0.474
2 151.622±0.498 1.988 349.279±0.506 2,037

4 78.907±0.461 3.821 181.331±0.073 3,925

8 43.273±0.037 6.967 94.274±0.035 7,549

6.3.3 Code Optimization

In order to improve the efficiency of the 2PACF code, an optimization process is per-

formed. Diverse strategies are tested, but only the following ones present a positive

impact in the execution time: the use of streams, reducing branching, and increment

the occupancy and the data locality.

Use of Streams and Asynchronous Copy. In the sequential part of the code, the

use of streams can be a key element to accelerate the code. A CUDA stream is

a queue of GPU operations that are executed in a desired order. In this queue,

operations such as data transfers between the host and the device, and kernel

invocations can be gathered. By creating more than one stream and distributing

appropriately the tasks among them, some extra speedup might be achieved.

Simultaneously with the use of streams, the standard and more usual version

of the cudaMemcpy() command should be replaced by cudaMemcpyAsync(). In

executing this replacement, the transference of data between the host and the

device changes from a synchronous process to an asynchronous one. It has to be

remarked that kernel invocation is always an asynchronous process.

Reducing Branching. In reducing the thread divergence, the number of serialized

threads is diminished, and an improvement of the performance is expected. This

strategy leads to substitute the if-conditionals by a function calculating the min-

imum between the number involved and the number one. In CUDA, for the

single precision implementation, the appropriate function is fminf ; whereas for

the double precision implementation is fmin.

Increasing the Active Blocks per Streaming Multiprocessor. Other aspect to

take into account during the optimization is to overcome the factors limiting the

107

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

kernel execution. In our case the profiling in the GTX295 shows that the main

limiting factor is the high number of registers used by thread. For this reason, the

target proposed is to reduce the number of registers used per thread. Following

this recommendation, some variables are removed, being this value calculated

when necessary. Besides some variables are switched from shared memory to

registers. With this change the stress over the on-chip memory is more correctly

balanced.

Table 6.4: Mean execution time (ms), reduction of the execution time and speedup
in comparison with original code of the 2PACF and when implementing all the positive
strategies: the use of streams, reducing branching, increment the occupancy and the data
locality.

Implementation

Single Precision,
Compute

Capability 1.2,
GTX295

Original Code 299,566.4±15.3 ms
Positive Strategies 275,303.8±17.6 ms

Reduction 24,262.6
Speedup 1.09

Single Precision,
Compute

Capability 2.0,
C2075

Original Code 314,346.8±199.6 ms
Positive Strategies 269,969.5±69.8 ms

Reduction 44,377.3
Speedup 1.16

Double Precision,
Compute

Capability 2.0,
C2075

Original Code 452,097.3±287.2 ms
Positive Strategies 438,934.0±132.2 ms

Reduction 13,163.4
Speedup 1.03

The mentioned modifications differ in the degree of success (Table 6.4). As can

be appreciated, for single precision the modifications have a higher impact over the

execution time than for double precision.

Fortunately the use of double precision is only required when binning angles lower

than 0.003 degrees. This happens when changing the histogram setup, and the re-

searchers require a high detail level for very short range of angles, for instance from 0

to 4 degrees with 256 bins.

The optimization processes presented in this section aim to be generalist, in such

way that the resulting code will be widely applicable. No optimization processes associ-

ated to the particularities of the input file, e.g. equality of the number of galaxies in the

real and random data sets; or the region of the space covered have been applied until

this point, e.g. simplify the arc-cosine calculation by a polynomial series expansion.

108

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

6.3.4 Concurrent Computing Optimization

Nowadays many computational systems are endowed of multi-cores in the main pro-

cessor units, and one or more many-core cards. This makes possible the execution of

codes on both computational resources concurrently. The challenge in this scenario is to

correctly balance both execution paths. When the scenario is simple enough, by-hand

optimization can be affordable, otherwise metaheuristics techniques are mandatory.

The maximization of the exploitation of the resources on an heterogeneous system,

multi-core CPU and many-core GPU, requires an optimum balance between the execu-

tion time of the tasks assigned to CPU and to GPU. This forces to carefully select the

amount of data analysed in each resource, which fairly balances both execution paths.

Otherwise, an important penalization in the execution time might be produced.

In the initial version of this code, the amount of data analysed in CPU and GPU

has been governed by a single parameter. This parameter governs the percentage of

galaxies analysed in CPU, while the remaining galaxies are analysed in GPU. This single

parameter is applied to the three histograms that have to be built for the calculation

of the 2PACF.

The works described in this section have been performed by using a C2075 card

(section 2.3.3.2).

6.3.4.1 Single Percentage Implementation

In the initial strategy, the percentage of data analysed in GPU and CPU is governed

by a single parameter for the three histograms.

Concurrent computation is possible because the construction of each histogram can

be split in partial histograms. Firstly, input data are split in two chunks. These chunks

are assigned to both computational resources: CPU and GPU, where the corresponding

partial histograms are constructed. At the end of the process, both partial histograms

are merged in the CPU. In the CPU part, a parallel implementation based on OpenMP

is performed, whereas in GPU is based on CUDA.

When using a single percentage for the concurrent execution of the histograms,

the fitness landscape presents a minimum in the range from 9% to 11% (Fig. 6.2).

Unfortunately, the percentages that exhibit the lowest values (11%) and the lowest

median (10%) do not coincide. This indicates the difficulty of the decision-making

process about the most suitable percentage to minimize the execution time.

109

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

06 07 08 09 10 11 12 13
Percentage

240000

245000

250000

255000

260000

265000

270000

275000

280000
E
x
e
cu

ti
o
n
 t

im
e
 (

m
s)

Figure 6.2: Execution time (ms) of 2PACF for concurrent execution by using a single
percentage (12 executions per case).

6.3.4.2 Multiple Percentages Implementation

By measuring the execution time of each histogram construction when being executed

completely in GPU, it has been proved that some of them take longer than others.

These execution times are related to the nature of the data which the histogram analyses

(positions of galaxies in the sky). The differences underlie on the data representation:

on the one hand, galaxies randomly distributed on the sky, and on the other hand,

galaxies distributed in clusters and superclusters following a particular cosmological

model. These differences impact over the execution times through the construction of

the histograms.

When histogramming galaxies with cosmological structure (clusters and superclus-

ters of galaxies), most of the galaxies feed a reduced number of bins in the histogram.

Then, the code must serialize a lot of increments in few bins. As a consequence, this

produces an increment in the execution time. Oppositely, for random data the con-

struction fairly distributes the counts in all bins, and therefore, less serialization is

produced. In this case, the construction of the histogram operates with a higher degree

of parallelism than in the previous case.

This scenario indicates that the strategy followed until this point —a single per-

centage for all the histograms— is quite naive. A single percentage does not balance

correctly both execution paths in the histograms. Consequently, the most appropriate

strategy is to propose independent percentages for each histogram. However, this in-

crement in the number of parameters to optimize, in practice, impedes to fit the values

by-hand, and makes necessary the use of evolutionary techniques for finding suitable

values for them.

110

Astro/figures/DE-TPACF-DES_singlepercentage.eps

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

By dividing the previous single percentage into three percentages, one per concur-

rent part of each histogram, a most suitable matching between the execution times of

both computational paths is expected, and finally an extra reduction in the execution

time. Although, the three parameters can be fitted separately, by freezing two his-

tograms constructions and optimizing the remaining one, the relatively narrow time

slot assigned to the optimization forces to run the optimization as a whole. Thus, each

finished run produces a potential solution for later verification process.

Due to its very simple and flexible implementation, Differential Evolution algo-

rithm (DE) is usually proposed as first attempt to solve complex optimization prob-

lems. Moreover, DE is able to produce high-quality suboptimal solutions with a limited

execution time budget.

Particularly, Python has been selected as programming language for the DE im-

plementation (schema DE/rand/1/bin). Python allows manipulating pieces of text,

composing files with these pieces; and then compiling the source code, executing it and

capturing output information from the execution. So, the proposed Python-DE imple-

mentation is able to deal with pieces of text, which conform the hybrid CUDA-OpenMP

source code.

Once the source code has been correctly assembled, Python implementation takes

care about compiling the source code, to execute it, and finally, to capture the execution

time. This last value corresponds to the fitness of each vector of the DE population.

By repeating this process along the population and the generations, the code produces

a set of optimized values for the three percentages.

Due that each 2PACF run takes around 250 seconds, the estimation of the execution

time of the whole process (10 vectors and 10 generations) will increase two orders of

magnitude in relation to a single 2PACF run.

When implementing the optimization process, each execution of the DE code pro-

duces a candidate solution composed of three percentages which minimize the execution

time (Fig. 6.3). The analysis of the results indicates a tendency towards larger values

of %DD than for the other %RR and %DR. This result is consistent with the fact that

DD histogram construction should take more time due to the galaxy clustering around

low angles.

Due that RR and DR histograms calculations involve random data, a lower num-

ber of serializations on the bins construction is expected. Therefore, these histograms

should be faster than DD histogram calculation, and consequently to get lower per-

centage of data processed concurrently in the CPU.

By observing Fig. 6.3 and Table 6.5, it can be stated that a tendency towards

graded values of the percentages: %DD > %RR >%DR is rawly achieved. The results

111

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

DD RR DR
0.07

0.08

0.09

0.10

0.11

0.12

0.13
P
e
rc
e
n
ta
g
e

DD RR DR
0.07

0.08

0.09

0.10

0.11

0.12

0.13

Figure 6.3: Panel (a, left) shows the comparative box plots for the percentages of DD,
RR and DR, while panel (b, right) shows the lines endorsing each particular realization.

mostly reproduce the structure expected for the percentages. However, an in-depth

insight to the individual results (Right Panel in Fig. 6.3) demonstrated that the current

implementation does not always produce sets with this schema, otherwise other schemas

as %DD <%RR appear.

In order to check the quality of the achieved solutions, a new production with

each particular percentage values set of %DD, %DR, and %RR obtained as optimizer

solutions, is performed with 12 executions per case. In the two last columns of Table

6.5, the mean execution time (fitness) achieved, and the speedup when comparing with

the case of a single percentage with the lowest median (10%) are presented.

For some cases: R1, R3 and R4 the reduction of the execution time is relevant;

whereas for other cases: R2 and R6 it is almost negligible. Finally, two cases: R5

and R7 do not produce any improvement in the execution time, even they take longer

than the best case of single percentage (10%). These results underline the difficulty

associated to obtain further reduction in the execution time of the optimized 2PACF

code. Moreover, the success cases demonstrate that the use of three percentages with

the appropriate values face to a single percentage improves the productivity of the code.

In order to produce higher-quality solutions, diverse actions can be applied to the

optimizer. Probably an increment in the number of cycles or in the population size

might mitigate the adverse scenario, but at the same time, it will increment critically

the optimizer execution time. Therefore, at this point a balance between the quality of

the suboptimal solution and the execution time is mandatory.

112

Astro/figures/DE-TPACF-DES.eps

6.3 Application of GPU Computing to the Two-Point Angular Correlation
Function

Table 6.5: Numerical results of the production with 10 vectors and 10 cycles: identifier,
percentages of the best solution achieved, fitness (execution time of 2PACF in ms) of the
best solution achieved, execution time of the optimizer run, mean and deviation standard
of the fitness (execution time of 2PACF in ms) after 12 runs for this particular percentages
set, and speedup (compared when using a single percentage, 10%).

Id. %DD %RR %DR
Best

Fitness
Optimizer

Execution Time
Mean Fitness
12 executions Speedup

R1 12.66 10.64 9.82 241,889 1,029m11.296s 242,762±1,600 1.022
R2 11.39 11.49 10.49 242,692 1,026m41.409s 247,506±4,697 1.003
R3 12.94 11.01 7.90 242,811 1,043m30.935s 244,369±2,467 1.016
R4 12.06 10.12 8.11 244,091 1,053m57.763s 244,410±151 1.016
R5 12.72 12.00 10.21 242,427 1,041m49.962s 250,555±5,854 0.991
R6 11.75 11.49 9.10 243,012 1,041m46.596s 246,572±2,575 1.007
R7 10.40 11.60 9.37 244,597 1,043m14.309s 249,483±5,513 0.995

Table 6.6: Numerical results of the production with 20 vectors and 10 cycles: identifier,
percentages of the best solution achieved, fitness (execution time of 2PACF in ms) of the
best solution achieved, and execution time of the optimizer run.

Id. %DD %RR %DR
Best

Fitness
Optimizer

Execution Time

R1 12.56 10.56 11.38 241,399 2,074m29.396s

R2 12.76 9.04 9.91 242,704 2,082m44.008s

As part of the production, two runs are executed doubling the population (Table

6.6). This increment results in an extra improvement of the fitness achieved, but

unfortunately, the execution time is doubled too. This increment makes unfeasible to

proceed with more improvements in the fitness through incrementing the population

or the number of cycles.

When statistically analysing the numerical results of each production with the Wil-

coxon signed-rank test, only the productions R1, R3 and R4 state that the differences

are significant for a confidence level of 95% (p-value under 0.05). This means that the

differences are unlikely to have occurred by chance with a probability of 95%.

Moreover, in order to assess if the performance is better than when using the best

case of single percentage (10%), the sign test can be used. The analysis indicates that

for the percentages obtained at R1, R3 and R4, the 2PACF execution takes shorter

than the previous best case, single percentage at 10%.

113

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

6.4 Application of GPU Computing to Shear-Shear Cal-

culation

6.4.1 General Description of the Program Flow

The code consists in the calculation of the quantities: ξ+, ξ−, ξ× (Eq. 6.8, Algorithm

1) as a function of the separation angle θ between the galaxies. This initial version of

the code focuses on the calculation rather than on the performance. However it has

been coded keeping in mind the most general recommendations for reaching the highest

efficiency.

Algorithm 1 The shear-shear correlation algorithm pseudocode

foreach Pair of Galaxies do
Calculate the separation angle θ between the galaxies on the sphere (dot
product);
if θ is in the user’s range then

Calculate all products of local components of the shears for both
galaxies (g[1,2][1,2] = γx;1,2 · γy;1,2);
Calculate course angles for both galaxies (Φ1 and Φ2) (Eq. 6.7);
(angle with respect to line of equal declination) ;
Calculate ξ+, ξ−, ξ× (Eq. 6.8) after projecting the shears to the
tangential and crossed components γt, γ×;
Populate the histograms held in shared memory with the computed
value of ξ+, ξ−, ξ×, number of pairs, and number of pairs with their
corresponding weights;

Load the histograms held in shared memory into global memory.

Once the separation angle θ of the galaxy pair is calculated and if it is within

the histogram range (user-defined), five values have to be computed and incorporated

in equal number of histograms. These values correspond to: the number of pairs of

galaxies, ξ+, ξ−, ξ× (Eq. 6.8) and the sum of weights of all the pairs. For the calculation

of the values and in order to avoid slow access to global memory, intermediate reusable

values are stored on shared memory, and the coordinates and ellipticities of the galaxies

on registers.

6.4.2 Memory Management

The baseline code implements a coalesced pattern access to global memory. Input data

are sorted by components rather than by galaxies: first the x-coordinates for all galax-

ies, and successively the y-coordinates, the z-coordinates, γx, γy (values of the measured

shear field in the local reference frame) and the weight values. By implementing this

114

6.4 Application of GPU Computing to Shear-Shear Calculation

layout, adjacent threads in a block request contiguous data from global memory. Co-

alesced access maximizes global memory bandwidth by reducing the number of bus

transactions.

Furthermore this baseline code pays special attention to making an intensive use of

shared memory for intermediate calculations and for the construction of the correlation

function histograms (Algorithm 1). The dot product and the arc-cosine calculation,

necessary to get the angle subtended by each pair of galaxies, are executed on shared

memory. The same is true for the calculation of the course angles for both galaxies and

the projection of the shears to the tangential and crossed components. This avoids the

use of global memory which is much slower than shared memory for any intermediate

calculation which requires frequent read and write accesses.

An expected bottleneck is the construction of the histograms. Until this point a

multithreaded calculation has operated over the pairs of galaxies calculating the dot

product followed by the arc-cosine and finally the bin in the angle histogram where the

value has to be incremented1. Due to the multithreaded nature of the kernel, simulta-

neous updates of the same bin in the histogram must be avoided in order not to miss

any count. This leads to the usage of atomic functions2 to create the histograms. Al-

ternatives to atomic functions exist, for example water-fall-if-elseif structures. However

they imply less flexibility to modifications to the angular range of the supported his-

togram as well as they diminish the readability of the kernel due to the larger number

of code-lines, making the code less compact.

A known drawback of atomic operations is that when two threads are trying to up-

date a value in the same bin, the operations are not parallel but sequential. Therefore

if millions of threads are accessing at most a hundred bins then the serialization of the

access will severely impact the performance. In order to overcome this bottleneck the

histogram construction can be parallelized by means of constructing sub-histograms on

shared memory and later gathering them on global memory. This mechanism incre-

ments the parallelism of the kernel and diminishes the impact of sequential operations

on performance.

The initial description of the code focused on an intensive use of shared memory

for intermediate operations. In order to avoid overloading it, registers are used to store

relevant data for the calculation in process. Registers have a higher bandwidth than

1For the sake of simplicity, only the angle histogram is considered in this reasoning, but the solution
is equally applied to the other histograms.

2The atomic operation for float on shared memory is supported for compute capability 1.3 and
higher [85].

115

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

shared memory but their size is smaller. Data frequently accessed1 for readout are

stored in registers such as galaxy coordinates, ellipticities and the weight value.

Unfortunately this strategy is not exempt from drawbacks. The increment in the

usage of registers can force the reduction of the occupancy, less streaming processors

are active at the same time. Therefore the volume of information migrated towards

the registers should be fitted carefully in order to avoid any harm to the performance

of the code. Several tests were performed with incremental use of registers until the

performance reached its optimum.

The baseline code has a consumption of 15.36 Kbytes of shared memory and 63

registers per thread achieving an occupancy of each multiprocessor of 25%.

Due to the fact that the correlation function needs to be studied at small separation

scales double precision is used. The only exceptions are the quantities added to the

histograms ξ+, ξ− and ξ× because atomic operations in double precision in shared

memory are still not supported. In all cases the numerical experiments have been

performed with CUDA 5.0 release.

6.4.3 Comparison with Athena Input Reference

For comparison purposes, ξ+, ξ− and ξ× obtained with the GPU implementation and

ATHENA version 1.54 with OA = 0.02 are plotted in Fig. 6.4. Despite the slightly

different binning schemes the results are in excellent agreement proving that the GPU-

based code presented here is completely compatible with a standard analysis code used

in cosmology. Unfortunately the sample ATHENA input file used as reference has only

40,546 galaxies. In order to obtain more realistic execution times a test with 1 million

galaxies with real data is detailed in the next section.

6.4.4 Comparison with 1 Million Galaxies Input Reference

As 1 million galaxies input file, data from the Canada-France-Hawaii Lensing Survey

[41] are used, hereafter referred to as CFHTLenS. The CFHTLenS survey analysis com-

bined weak lensing data processing with THELI [28], shear measurement with lensfit

[65] and photometric redshift measurement with PSF-matched photometry [42]. A full

systematic error analysis of the shear measurements in combination with the photo-

metric redshifts is presented in [41], with additional error analyses of the photometric

redshift measurements presented in [7].

1This technique is termed increment of data locality. Data frequently used are stored locally to the
thread.

116

6.4 Application of GPU Computing to Shear-Shear Calculation

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

�0.00010

�0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

�

+

GPU

Athena

(a) ξ+

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

�1.0

�0.5

0.0

0.5

1.0

1
0
6

�

(�

G
P
U

+

�
�

A
T
H

+
)

(b) 106 × (ξGPU
+ − ξATH

+)

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

�0.00010

�0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

�

GPU

Athena

(c) ξ−

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

!1.0

!0.5

0.0

0.5

1.0
1
0
6

"

(#

G
P
U

$

%
#

A
T
H

$

)

(d) 106 × (ξGPU
− − ξATH

−)

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

&0.00010

&0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

'
(

GPU

Athena

(e) ξ×

0.5 1.0 1.5 2.0 2.5
Angle [arcmin]

)1.0

)0.5

0.0

0.5

1.0

1
0
6

*

(+

G
P
U

,

-
+

A
T
H

,

)

(f) 106 × (ξGPU
× − ξATH

×)

Figure 6.4: Comparison of the results obtained with the GPU implementation and
ATHENA v1.54 OA=0.02 for the ATHENA input reference (40,546 galaxies): a) ξ+, c) ξ−
and e) ξ×; and, b) 10

6×(ξGPU
+ −ξATH

+), d) 106×(ξGPU
−
−ξATH

−
), and f) 106×(ξGPU

×
−ξATH

×
).

117

Astro/figures/./athena_input/xip-lowangles.eps
Astro/figures/./athena_input/xip_diff.eps
Astro/figures/./athena_input/xim-lowangles.eps
Astro/figures/./athena_input/xim_diff.eps
Astro/figures/./athena_input/xix-lowangles.eps
Astro/figures/./athena_input/xix_diff.eps

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

A query was done on the CFHTLenS catalogue query page1 for right ascension, dec-

lination, the ellipticities (as proxies of the shear) and the weight without any selection

cuts, except the requirement that the measured ellipticities are non-zero. The purpose

here is to run the code on a catalogue with ellipticities even if they are not accurate or

contains contamination from non-galaxy components. An area was selected from one

of the four fields to hold exactly one million galaxies (randomly selected).

On the resulting catalogue, the GPU code is executed as well as ATHENA with

varying opening angles to compare precision and execution time performance. For this

purpose, the binning is tuned to obtain values for ξ+, ξ−, ξ× at the exact same angle

separation values θ. The results of execution times are shown in Fig. 6.5.

0.05 0.02 0.01 0.005 0.0 GPU
Opening Angle (radians) except for GPU

102

103

104

105

106

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Figure 6.5: Mean execution time (s) for ATHENA code for various opening angles (ra-
dians) and GPU code for 1 million galaxies input reference (CFHTLenS). The execution
time of the GPU code is roughly equivalent to the ATHENA code for an opening angle of
0.01 radians. For the same precision (’brute-force’) the GPU implementation is a factor 68
faster than a CPU-based code such as ATHENA.

The GPU implementation takes 3, 650.0± 1.4s to analyse this catalogue. It should

be noted that execution times are tightly bound to the number of bins in the histogram.

Variations in this will produce a different amount of sequential updates on the values

stored in the bins, and consequently of the execution time. The GPU implementation

speed is comparable to ATHENA when using an opening angle 0.01 radians for this

dataset: 3, 723.3± 8.4s, (see Figure 6.5).

When the opening angle approaches zero radians, the code makes fewer approxima-

tions and becomes equivalent to a brute force method. Unfortunately the reduction of

1http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html

118

Astro/figures/./et-athena_GPU.eps

6.4 Application of GPU Computing to Shear-Shear Calculation

the opening angle leads to a critical increment in the execution time. For OA = 0.005

radians the execution time, 12, 688.7 ± 122.7s, this is 3.5 times slower than the GPU

processing time. Finally for OA equal to zero the execution time increases to 247, 681s

this is a factor 68 slower than the GPU code execution time.

Concerning the precision, Figure 6.6 shows how using an OA with an execution

time equivalent to the GPU code (OA = 0.01) can induce large errors (a few percent

in relative terms). The exact required precision will differ from survey to survey and

is still a topic of debate in the cosmological community. On the other hand, the GPU

code shows differences smaller than 0.001% with respect to the (much slower) OA=0.0

execution. It is worthwhile noting that for larger datasets in terms of angular range

the required OAs to reach the same overall precision will be smaller thus pushing the

case for a fast brute-force implementation to tackle future shear surveys.

6.4.5 Code Optimization

Once the performance has reached a satisfactory level and considering that most of the

additional code modifications degrade the performance, a second phase of optimization

based on the compiler options is performed.

The most successful test corresponds to the modification of the L1 configuration.

The Fermi architecture of the GPU distributes 64 KB between shared memory and L1

cache memory. Three configurations are possible: the default configuration with 48KB

of shared memory and 16 KB of L1 cache memory, a second configuration with 16KB

of shared memory and 48 KB of L1 cache memory and finally it is possible to turn off

L1 cache memory.

Both L1 and L2 cache are queried during the memory location process. First of

all L1 is queried and only when memory location is not found L2 is queried. Finally

if memory location is not found in any of the two caches then main memory is ac-

cessed. Through main memory accessing L1 and L2 caches are populated with memory

addresses which might avoid future main memory accesses.

The configuration implementing 48KB as cache memory and 16 KB as shared mem-

ory is recommended when intense data reuse exists or one has a misaligned, unpre-

dictable or irregular memory access pattern. If applications need to share data among

the threads of the thread-block, 48KB as shared memory and 16KB as cache memory

is recommended. If the kernel has a simple enough memory access pattern the explicit

caching of global memory into shared memory through L1 turn-off may increment the

performance of the code.

As the baseline code implements the L1 default configuration the two other options

are tested in order to check potential reductions in the execution time. The numerical

119

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

101 102

Angle [arcmin]

.4

.3

.2

.1

0

1

2

3

4
1
0
6

/

(0

G
P
U

+

1
0

A
T
H

+
)

OA=0.0

OA=0.005

OA=0.01

OA=0.02

(a) Deviations GPU-ATHENA of computed ξ+.

101 102

Angle [arcmin]

24

23

22

21

0

1

2

3

4

1
0
6

3

(4

G
P
U

5

6
4

A
T
H

5

)

OA=0.0

OA=0.005

OA=0.01

OA=0.02

(b) Deviations GPU-ATHENA of computed ξ−.

Figure 6.6: Deviations of the GPU code results with respect to ATHENA results at
different opening angle settings, for the computation of ξ+ and ξ−. As the OA becomes
smaller, less approximations are made by the ATHENA implementation, and the result
converges to the GPU computed values (to levels below 0.001%).

120

Astro/figures/./xip_diff_OA_comparative.eps
Astro/figures/./xim_diff_OA_comparative.eps

6.4 Application of GPU Computing to Shear-Shear Calculation

Table 6.7: Mean execution time (s) for original code and when applying L1 optimization.

Baseline Code 3,650.0±1.4
Base Code +
L1 turn off 3,618.7±0.6
Reduction 31.3

Speedup 1,009 (0.9%)

experiments demonstrate that only the configuration with L1 turned-off improves the

efficiency of code. By turning off L1 cache the achieved speedup is 1.009, which is

equivalent to 0.9% of improvement (Table 6.7).

The statistical analysis of the execution times (Table 6.7) is performed using the

Wilcoxon signed-rank test. The results of this test (p−value = 8 ·10−5), indicates that

the differences are statistically significant for a confidence level of 95% (p-value under

0.05).

6.4.6 Heterogeneous Computing

The previous section optimization focused on the reduction of the execution time by

modifying the code and the compilation options. The baseline code and the later

L1 memory optimization has produced a competitive implementation where a high-

accuracy and an affordable execution time are achieved.

However, parts of the computational resources are underused because during the

kernel execution the CPU stays idle. In order to balance the computational load be-

tween GPU and CPU a concurrent computing scenario is proposed. Concurrent com-

puting allows distributing tasks between the CPU and GPU. The tasks involved should

not have dependencies between them. Concurrency is applied to the shear correlation

calculation by dividing the input data into two chunks which are assigned to CPU and

to GPU respectively. In the CPU part a parallel implementation based on OpenMP is

applied. Due to the fact that the optimal scenario is when both executions take the

same execution time, the choice of the chunk size is critical. Initially diverse chunk

sizes are tested in order to select the most appropriate one for the reduction of the

execution time (Fig. 6.7).

This naive trial-and-error method shows that the optimal chunk size is to compute

11% of the galaxies on CPU and the rest on GPU on our test setup. This may differ

for different machines. For lower percentages the CPU-part analysis finishes faster

than GPU-part. As a larger volume of data is supplied to CPU-part the execution

time diminishes progressively up to where the minimum is reached. When a larger

121

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

6 10 11 12 15
Percentage executed on CPU

3200

3400

3600

3800

4000

4200

4400

4600

T
im

e
 (

s)

Figure 6.7: Execution time (s) for diverse CPU-processed percentages in the concurrent
computing model. The dotted line is the reference to the baseline code execution time,
whereas the dashed line is the execution time after L1 memory optimization.

Table 6.8: Mean execution time (s) for original code and for the previous improvements
plus when implementing concurrent computing.

Baseline Code 3,650.0±1.4
Base Code + L1 turn off +
Concurrent Computing 3,287.80±0.03

Reduction 362.20

Speedup 1.11 (11%)

than optimal amount of data is supplied for CPU processing the execution time grows

significantly.

When balancing CPU and GPU processing, the code achieves an integrated speedup

of 1.11, which means a reduction in the processing time of 11% in relation to the baseline

execution time (Table 6.8), including the previous code optimization.

The statistical analysis with Kruskal-Wallis test of the successive versions of the code

states that the differences in the execution time are significant at a significance level of

more than 95%. The Wilcoxon signed-rank test with the Bonferroni correction indicates

that the differences between the three sets of execution times (baseline, L1 memory

optimization and concurrent implementation) are also significant at a significance level

of more than 95%. This result reinforces that the modifications applied produce a net

improvement in the application productivity.

122

Astro/figures/ConcurrentComputing_Opt.eps

6.4 Application of GPU Computing to Shear-Shear Calculation

Table 6.9: Mean execution time (s) for original code and for the previous improvements
plus when implementing the loops reordered.

Baseline Code 3,650.0±1.4
Base Code + L1 turn off +

Reordering loops 3,243.3±0.9
Reduction 406.7

Speedup 1.13 (13%)

6.4.7 Further Code Optimization

6.4.7.1 Reordering Loops

Although the OpenMP-CUDA implementation obtains a speedup of 1.11X, it is not

fully satisfactory, specially taking into account that the goal is to be able to process

very large files. So, before testing other hybridization such as MPI-CUDA, additional

efforts in the kernel optimization have to be performed.

First of all, a modification of the sequence of the commands in the kernel is proposed.

The kernel goes through the pairs of galaxies by using a double loop. Initially the

sequence of the commands is a double loop with the commands for-while.

When implementing the double loop for-while, the coordinates of the most inner (in

the loop) galaxy are loaded N2 times. However, the alternative double loop for-while

only makes N loads of the most inner coordinates to go through all the pairs of galaxies.

In both cases, the coordinates in the outer loop are loaded once.

By profiling the both versions of the kernel, it can be checked that the number of

global memory load requests are reduced to the half. This modification does not alter

the values of the profiling such as, occupancy, shared memory consumption, or register

consumption.

As a consequence of this modification, the mean execution time is reduced to

3,243.3±0.9 s (Table 6.9).

6.4.7.2 Vectorization

As second test, the vectorization of the loads of the galaxies coordinates and ellipticities

is tested. The high computational capacity of the GPU hardware makes that many ker-

nels are bandwidth bound. Independently of the calculation, an efficient management

of the bandwidth is mandatory to achieve a high efficiency. In the baseline implemen-

tation, this efficient management of the bandwidth was considered pertinent from the

initial steps of the porting process.

123

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Table 6.10: Mean execution time (s) for original code and for the previous improvements
plus when implementing vectorized loads.

Baseline Code 3,650.0±1.4
Base Code + L1 turn off + Reordering loops +

Vectorization 3,184.2±0.7
Reduction 465.8

Speedup 1.14 (14%)

In addition to the previous considerations and in order to improve the performance

of the GPU implementation, some of the load and store operations are replaced by

vectorized instructions. By using vectorized instructions, the total number of load in-

structions and the latency are reduced, while improving the bandwidth exploitation.

Unfortunately, the mandatory use of double precision limits the use of vectorized in-

structions. Only the vector type double2 is available to implement the vectorized loads.

It should be underlined that the use of vectorized loads is not exempt of drawbacks:

a higher consumption of register per thread is produced. For this reason, the conversion

of some variables from double to double2 has to be done step by step and by measuring

if any reduction in the execution time is achieved. In our case, only the load of the

coordinates of the galaxy and the ellipticities in the for-loop is worth to be converted

from double to double2. After the vectorization process, the execution time becomes

3,184.2±0.7 s (Table 6.10).

When statistically analysing these execution times (baseline implementation, re-

ordered loops implementation and vectorized implementation) with the non-parametric

tests, it can be stated that the differences are significant for a confidence level of 95%

(p-value under 0.05).

6.4.8 Hybrid MPI-CUDA Implementation

During a long period, the ATHENA code has been a reference of the shear-shear cal-

culation. This implementation has been widely employed due to a successful strategy

(kd-trees) to reduce the computation complexity. However, due to the increment ex-

pected for the forthcoming years in the volume of data accessible by cosmologists, new

efforts in the acceleration of the analysis are mandatory.

After the long track of optimizations, the first objective is that the MPI-part of the

code does not penalize the execution time. This can be verified through the execution

time of the 1-node MPI-CUDA executions (Table 6.11). As can be appreciated, the

1-node execution time (3,325.39 s) is comparable with the mean execution time of the

GPU-implementation (3,184.2 s), being only a 4.4% larger.

124

6.4 Application of GPU Computing to Shear-Shear Calculation

Table 6.11: Execution time and speedup (20 executions) for MPI-CUDA implementation
and 1 million of galaxies of the shear-shear calculation for diverse number of nodes.

Nodes
Execution

Time

Speedup
Related to

MPI-CUDA 1-node
Implementation

Speedup
Related to GPU
Implementation

Speedup
Related to

ATHENA Code
at OA=0.0

1 3325.39±0.66 0.96 73.4

2 1672.59±0.47 1.99 1.90 145.9

4 845.15±0.29 3.93 3.77 288.7

8 432.24±0.19 7.69 7.37 564.6

16 225.49±0.13 14.75 14.12 1082.2

Concerning the behaviour of the MPI-CUDA implementation for larger number of

nodes (second column at Table 6.11), the speedup obtained when using 2 and 4 nodes

is really close to the theoretical maximum speedup, whereas for 8 nodes the speedup

diminishes slightly. Finally, when using 16 nodes the speedup degrades to 14.75. This

degradation of the speedup for 16 nodes computation corresponds to the case when the

time of data transfer becomes comparable with the time of data processing. However,

the final aim of the GPU-CUDA implementation is to process files much larger than

1 million of galaxies. Therefore, a mitigation of this degradation is expected when

executing these very large files. In these cases, the time of data transfer will loss

relevance in relation to the processing time.

In addition to the comparison of the execution times with the 1-node execution

time, other comparisons can be performed against the execution time of the GPU

implementation (third column at Table 6.11). Obviously, the speedups obtained in this

case are lower than in the previous cases. However, they provide a clue if the effort

of porting the application to a hybrid platform, MPI-CUDA, is fruitful. As can be

appreciated in the values shown in the third column at Table 6.11, the speedups are

similar to those obtained when comparing with 1-node MPI-CUDA implementation.

Therefore, it can be concluded that the MPI-CUDA implementation performs in a high

level, with a small degradation.

The degradation reported for the largest number of nodes will be partially mitigated

when analysing input files larger than 1 million galaxies. As an example, two tests are

executed with an input file of 15 millions of galaxies. Although, no observational files

with this size exist today, they are expected to reach this size in the forthcoming years.

When executing the analysis of 15 millions of galaxies in the GPU implementa-

tion, the execution time takes 169 hours, whereas when executing on the MPI-CUDA

125

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

implementation with 16 nodes it takes only 11 hours, achieving a speedup of 15.36.

As foreseen, the larger input file mitigates the degradation when executing with large

number of nodes. So that, by varying from 1 million to 15 millions of galaxies the

speedup for 16 nodes executions grows from 14.12 to 15.36.

This last test is repeated by using 16 nodes with M2050 GPU cards instead of

M2075. In this test, the execution time is identical, 11 hours. Both cards, equally

perform for this implementation and input file. By mixing both resources: M2050 and

M2075 cards, an execution with 32 nodes is also tested. In this case, the MPI-CUDA

implementation takes 6 hours to analyse the 15 million of galaxies. For this test, the

speedup achieves 28.17.

Finally, the execution times of the 1 million galaxies test can be compared with the

execution time of ATHENA when using zero opening angle: 247,681 s (last column at

Table 6.11). If this execution time is compared with the 16-nodes (225.49 s), an overall

speedup of 1082.2 is obtained.

6.5 Improvement in the Precision of Histogram Calcula-

tion on GPU

Histogram calculation is an essential part of multitude of scientific analysis. In cos-

mology, they are frequently employed to study the large-scale structure of Universe

through the statistical analysis (correlation function) of large amount of data. Among

the most commonly used correlation functions are: the two-point and three-point cor-

relation functions and the shear-shear correlation function. Therefore, the precision on

the correct calculation of the counts in each bin is a key element in the final precision of

the cosmological variables. In order to accelerate the analysis of large data sets, GPU

computing is being widely employed. However, the recommended histogram calcula-

tion procedure suffers from lack of precision while analysing large data sets. In this

section, an alternative implementation to those presented at Section 6.2.3 for histogram

calculation which is able to tackle large data sets with high precision, while maintaining

an affordable execution time, is proposed. This implementation is tested against three

cosmological analyses by using observational data.

The work presented in this section has been performed in a C2075 card as it is

described at section 2.3.3.2.

6.5.1 Weaknesses of Number-Representation

The floating point encoding allows representing numbers in the range from 1.18×10−38

to 3.40× 1038. However, this representation is done with some approximations. Some

126

6.5 Improvement in the Precision of Histogram Calculation on GPU

numbers can be exactly represented, for example the number 1; whereas others are rep-

resented approximately, for example the number 0.1 or the fraction 2
3 . This incapability

to represent exactly some numbers carries on inexactness of the result under certain

circumstances, and as a consequence, the accuracy of the analysis can be affected. In

[99], a selection of the peculiarities related with the precision of the float representation

and their operations on GPU is presented. For a more extensive introduction about

floating point representation, the following references can be consulted [38] [45].

Other aspect of floating point representation related with the current work is the

termed as epsilon comparison, boolIsEqual = fabs(f1 − f2) <= epsilon, or in other

words, when adding to a value a unit in float-representation and the result is equal to

the initial value. The float-representation can not represent correctly all the integers

above 16,777,216. If a unit is added to this number, the result is the same number.

This is because the float-representation lacks of the accuracy to correctly represent all

the integers in the range from 16,777,216 to 3.40× 1038.

When analysing cosmological data with correlation functions, the procedure is

roughly as follows. After calculating the separation (linear or angular) between the

galaxies, if the distance or the angle is in the range of the histogram, then a value is

added to the corresponding bin. For 2PACF and 3PACF, the value is the unit, whereas

for the shear-shear correlation this value depends on the shapes and the orientation of

the galaxies, being a non-integer number.

Therefore, as a side effect of the lack of accuracy for representing some integers

larger than 16,777,216, if a bin reaches this number of counts, then the additional

coincidences of two galaxies for the angle or the distance corresponding to this bin

will be lost. Thus, for the case of adding counts unit by unit in the bins, the number

of counts will never grow above 16,777,216. And, consequently, the accuracy of the

cosmological calculation will be affected. The capacity to correctly gather the number

of counts assigned to a bin is termed bin containment.

The use of a number-representation based on integer will theoretically solve the

lack of accuracy of float-representation. For example, integer representation is able to

reproduce numbers up to 2.1 · 109, and unsigned-integer representation up to 4.3 · 109.
However, even these limits are inadequate for cosmological studies when using large

data sets1. On the other hand, it will be also demonstrated that unsigned-long-long-

integer representation fulfils the requirements of accuracy, but it severely penalizes the

performance.

1When analysing 1 million galaxies with the 2PACF or the shear-shear correlation codes, then the
most populated bins reach the order of 1010 counts. For the 3PACF with a input of 104 galaxies, the
most populated bins have a similar number of counts.

127

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

In the following section, these scenario are in-detail studied, and an alternative

approach is proposed and evaluated.

6.5.2 Results and Analysis

6.5.2.1 Float-based Implementation

This first implementation follows the recommendation guidelines of the [76] and the

procedure recommended at the book [85]. In this case, the implementation is based

on float precision, and using shared memory for storing the sub-histograms and global

memory for gathering the final histogram. This implementation has been widely used

for cosmological analyses, for example, for the 2PACF [13, 17, 18, 77]; 3PACF and

shear calculation [14].

The limit of the largest attainable number in float precision and the lack of precision

will be more important in the 3PACF than in the 2PACF. This stems from the fact

that if N galaxies are going to contribute to a single bin, then for the 3PACF this bin

will accumulate N3 counts; whereas for the 2PACF only N2 counts. For this reason,

the 3PACF is used in this section to stress the float-based implementation and the

following ones.

During the execution, the threads go through all the triplets of galaxies. For each

triplet, the bin where a count has to be added is calculated, and if the bin is in the

range of the histogram, the addition is performed. This addition is performed over

the sub-histograms held in shared memory, and for this operation, the atomicAdd()

function is used. Since the kernel is multithreaded, simultaneous updates of the same

bin might occur, so that the use of atomic functions is mandatory. Finally, all the

sub-histograms are gathered over the final histogram on global memory by using again

the atomicAdd() function. Presently, the atomicAdd() function can be implemented in

float, integer, unsigned-integer and unsigned-long-long-integer precision.

For the float-based implementation, the lack of sensitiveness is the most relevant

problem, because previously to reach the limit of the largest number in float, the

mentioned addition through the atomicAdd() function will become not effective. When

adding one unit to a bin where a large number of counts are, at least 16,777,216 counts,

the final result will not show the correct result of the addition.

For illustrating this effect, some artificial input files have been created and processed

with the 3PACF and the float-based implementation. In these files, all the galaxies

(points) have the same coordinates, and therefore they will contribute to a single bin

(the zero bin). The numerical results (Table 6.12) of this test show that float-based

implementation handles correctly up to 8 · 109 counts per bin, which corresponds to

128

6.5 Improvement in the Precision of Histogram Calculation on GPU

Table 6.12: Float-based implementation for the 3PACF: execution time and precision.

Input Size Counts per bin Correct result?
Kernel

execution time

1k 109 Yes 2,861 ms

2k 8 · 109 Yes 22,803 ms

3k 2.70491 · 1010 No n/a

4k 6.37629 · 1010 No n/a

an input size of 2 · 103 galaxies. Otherwise, when the input size is 4 · 103, the final

result shows a deficit of counts1. This indicates the incapacity of this implementation

to accurately contain 6.4 · 1010 counts per bin.

For comparison purpose, when analysing observational data, for example the 1

million galaxies input file from CFHTLenS, the most populated bins reach around

1.2 · 1010 counts. Therefore, the limitations presented in this section are very pertinent

for obtaining accurate results.

Special attention has to be paid to the case of 3k input size (Table 6.12). In this

case, no deficit of counts appears, but oppositely it is overestimated. This overestima-

tion stems from the limited precision for representing some numbers when using float

precision. When iteratively adding numbers, which during the representation process

have been rounded up, the final result is slightly higher than expected2.

In order to demonstrate this effect, a new execution is performed with 3k galaxies

but corresponding to more than one single bin. Instead of having 3k identical single

positions, 2k galaxies have the same coordinates and the remaining 1k, other different

coordinates, but identical among them. When forming triplets between points selected

from both subsets, then the bins corresponding to 1-degree angle of separation are fed.

Otherwise, when the points are selected inside of each subset, only the zero degree bin

is incremented. In this way, the overall 2.7 ·1010 counts are distributed among few bins;

oppositely to the scenario when all positions are identical, in which all the counts feed

a single bin, the zero bin. When using as input data this 2k+1k file, the overall number

of counts is correctly accumulated.

From the previous results, it can be concluded that the use of float representation as

base of the histogram construction can produce two different types of errors: deficit or

overestimation of the number of counts per bin. As a consequence, this implementation

can induce errors in cosmological calculations.

1In the case where the implementation produces an incorrect number of counts per bin, the execu-
tion time is not shown, and as an alternative the string n/a is presented.

2The typical academic example of this underlying inexactness is the calculation of the number one
by iteratively adding ten times the value 0.1 in float precision. The final result obtained is 1.0000001.

129

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Table 6.13: Integer-based implementation: execution time and precision.

Input Size Counts per bin Correct result?
Kernel

execution time

1k 109 Yes 3,319 ms

2k -589934592 No n/a

Table 6.14: Unsigned-integer-based implementation: execution time and precision.

Input Size Counts per bin Correct result? Kernel execution time

1k 109 Yes 3,318 ms

2k 3705032704 No n/a

At Table 6.12 and following ones for other implementations along this work, the

execution times1 of the kernel for diverse input sizes are presented, except for the cases

where the implementation fails to calculate the correct result. Besides, the number of

counts per bin is also presented.

In order to overcome the problems with the precision of the calculations, diverse

modifications of the precision are tested. In the following, the other available number-

representations for the atomicAdd() function are implemented and the results analysed.

6.5.2.2 Integer-based Implementation

In this second strategy, the previous case is modified by replacing float precision by

integer precision. Unfortunately, this modification aggravates the final result (Table

6.13). Only the input with 1k points is correctly processed. Larger number of counts per

bin is incorrectly processed due to the limit of the largest value that can be represented

in integer precision.

6.5.2.3 Unsigned-Integer-based Implementation

By replacing integer precision by unsigned-integer precision, the problem is not solved

(Table 6.14). Still the largest input file correctly processed is 1k galaxies. This new

implementation does not handle correctly cases where 8 · 109 counts per bin ought to

be accumulated.

1For measuring the kernel execution time, the CUDA API event has been used. This mechanism
is more precise than CPU or operating system timers because it eliminates the sources of latency
associated to the operating system.

130

6.5 Improvement in the Precision of Histogram Calculation on GPU

Table 6.15: Unsigned-long-long-integer-based implementation: execution time and preci-
sion.

Input Size Counts per bin Correct result?
Kernel

execution time

1k 109 Yes 9,778 ms

2k 8 · 109 Yes 78,161 ms

3k 27 · 109 Yes 263,690 ms

4k 64 · 109 Yes 624,983 ms

5k 125 · 109 Yes 1,220,516 ms

10k 1012 Yes 9,762,523 ms

Table 6.16: Profile of the implementations.

Implementation
Static

Shared Memory Registers Occupancy

Float 2.05KB 25 67%

Integer 2.05KB 28 67%

Unsigned integer 2.05KB 28 67%

Unsigned long long integer 4.10KB 28 67%

6.5.2.4 Unsigned-Long-Long-Integer-based Implementation

In order to improve the precision of the kernel calculating the histogram, in the previous

implementation the unsigned-integer precision is replaced by unsigned-long-long-integer

precision. The results of this implementation demonstrate that it calculates correctly up

to 1012 counts per bin (Table 6.15), which corresponds to an input size of 104 points. As

can be appreciated at Table 6.15 and taking into account the volume of observational

data nowadays accessible, this implementation fulfils the precision requirements for

cosmological calculations.

Unfortunately, the execution time takes much longer than for the previous imple-

mentations1. For example, for processing 103 points input (109 counts per bin), the

unsigned-long-long-integer implementation takes more than three times (3.4) that the

float-based implementation; whereas for 2 · 103 points input a similar ratio between

both execution times is obtained.

In-depth analysis of the kernel (Table 6.16) unveils that the three integer-based im-

plementations consume more registers than float-based implementation. On the other

hand, the unsigned-long-long-integer implementation consumes more static shared mem-

1In order to fairly compare, the execution times correspond to the kernel execution, and they do
not include any disturbing factors as the data copy between the CPU and GPU or the conversion of
data from right ascension and declination to Euclidean coordinates.

131

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

ory than the remaining ones. In any case, neither of these variation modify the occu-

pancy.

Since a trade-off between the precision and the performance of the implementation

is the final goal, this implementation can not be considered for analysing large input

files due to its large execution time.

6.5.2.5 Float-based Alternative Implementation

In order to overcome the difficulties associated with the lack of precision and the large

execution time, a new implementation is proposed. Similarly to the previous imple-

mentations, the proposed implementation creates the sub-histograms on shared mem-

ory with float precision, but in contrast to the former ones, it does not accumulate the

sub-histograms into the final histogram on global memory. In this new approach, the

gathering of the sub-histograms into the final histogram is done in the CPU memory

(RAM). This modification allows implementing the final histogram in double precision,

whereas until now the previous implementations are limited to use single precision.

In the previous implementations, firstly the counts are added to the sub-histograms

on shared memory by using the atomicAdd() function. Later the sub-histograms on

shared memory are gathered in the final histogram on global memory by using, once

again, atomicAdd() function. Currently the atomicAdd() function is limited to accu-

mulate values with precision of integer, unsigned-integer, unsigned-long-long-integer,

and float; but unfortunately it does not support double precision.

In the proposed implementation, the initial addition of the counts through atomi-

cAdd() function to sub-histograms on shared memory is maintained. However, later the

sub-histograms are not gathered on global memory. Contrary, all the sub-histograms

are copied to global memory in such way that they are sequentially arranged. For this

purpose, on global memory an array is created to hold all the sub-histograms sequen-

tially ordered. In this way, all the sub-histograms are sent to the CPU memory where

they are gathered in the final histogram. The key point of this new implementation is

that this final histogram on CPU is defined with double precision, and therefore the

precision is enhanced.

As a consequence, in the new algorithm the array holding the histograms on global

memory does not have the size of the histogram, but the equivalent size to all the

sub-histograms aligned sequentially.

This alternative does not avoid some penalties. Among others, the new array for

holding all the sub-histograms increases the global memory consumption by a factor

equal to the number of the thread blocks used during the kernel invocation. Moreover,

this larger array takes longer during the copy of data between the CPU memory and the

132

6.5 Improvement in the Precision of Histogram Calculation on GPU

Table 6.17: New algorithm implementation: execution time and precision.

Input Size Counts Correct result? Execution time

1k 109 Yes 2,873 ms

2k 8 · 109 Yes 22,701 ms

4k 64 · 109 Yes 181,562 ms

5k 125 · 109 Yes 353,717 ms

10k 1012 Yes 2,819,102 ms

global memory. Finally, the final gathering in this new implementation is performed in

a sequential manner on CPU, instead of a parallel way on GPU. All these considerations

will slows down the execution.

To fairly compare, the execution time in this implementation is measured including

the kernel execution and the gathering of the sub-histograms into the final histogram

on the CPU; whereas for the previous cases, the execution time corresponds only to

the kernel execution.

The numerical results (Table 6.17) demonstrate that the proposed algorithm is

able to process correctly at least up to 1012 counts per bin1, equally to unsigned-long-

long-integer implementation, but with a reduction of the execution time by a factor of

3.4. When comparing with the float-based implementation, a similar execution time is

produced. Therefore, the proposed implementation exhibits a capacity to deal with as

large input size as unsigned-long-long-integer implementation, at the same time that

it maintains a similar execution time as the fastest implementation, the float-based

implementation.

It should be underlined that the precision of the proposed implementation depends

on the parameters used during the kernel invocation. In all the cases, the number

of threads per block has been considered only depending on the histogram structure

and the current limitation of the hardware. The limitation of the number of threads

per block on Fermi architecture (1024) forces to establish for the 3PACF a thread

block structure of 8× 8× 8 threads, 8 bins per each one of the three angles subtended

by each triplet of points. So that, the number of thread blocks becomes relevant for

the precision of the implementation2. More thread blocks mean that the counts will be

distributed among a larger number of sub-histograms on shared memory, and therefore,

less likely to reach the value 16,777,216 in any bin. If the number of thread blocks is

reduced, then the problem associated with the lack of precision in float representation

1This number of counts per bin is high enough for the analysis of the current observational data.
2Further details of the Fermi architecture and its relation with the histogram construction can

be found in [14]. This work focusses on the shear-shear analysis but many considerations can be
extrapolated to other correlation functions.

133

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

Table 6.18: Precision of the results for diverse number of thread blocks and two large
input sizes: 5k and 10k galaxies.

Thread blocks Counts Correct result? Execution time

5k galaxies

84 115.956 · 109 No n/a

98 125 · 109 Yes 353,717 ms

10k galaxies

210 0.74 · 1012 No n/a

280 1012 Yes 2,819,102 ms

emerges. Oppositely, if the kernel is invoked with a larger number of thread blocks,

then this problem is mitigated. As an example, at Table 6.18, the number of thread

blocks1 required for correctly processing very large input files (5k and 10k galaxies) is

presented.

The profiling of the kernel which implements the new algorithm does not differ from

the values presented at Table 6.16. The register consumption is the same as in the float-

based implementation: 25, as well as the static shared memory consumption: 2.05KB.

The most significant difference emerges in the time that the new histogram-array takes

to be copied to and from the global memory. In the previous implementations, it

takes less than 2µs, whereas in the new algorithm takes much more. This transfer

time depends on the number of thread blocks with which the kernel is invoked. For 280

thread blocks, the most unfavourable case, the copy to or from the global memory takes

47 ms. In despite of this penalization, the time for the two copies is tiny compared with

the kernel execution time, 2,819,102 ms, having a very limited impact on the overall

performance.

6.5.3 Real Cases

Until now the new algorithm has been tested with a real cosmological problem (3PACF)

but by using artificial input files to fully control the tests. In order to complete the

analysis, a new study is performed with observational data coming from the CFHTLenS

survey [41]. For these tests, a set of 106 galaxies has been extracted from the survey.

In the previous sections, it has been proved that the new algorithm correctly re-

produces at least up to 1012 counts per bin. In the next studies, it will be checked the

differences between the new algorithm and the float-based implementation. Addition-

1For performance reasons, the number of thread blocks has been chosen as a factor of the number
of streaming processors (14) on Fermi architecture.

134

6.5 Improvement in the Precision of Histogram Calculation on GPU

0 50 100 150 200 250
Bin

70.0003

70.0002

70.0001

0.0000

0.0001

0.0002

0.0003

0.0004
R

e
la

ti
v
e
 E

rr
o
r,

 %

Figure 6.8: Relative error, 100 · DDfloat−based−DDnew algorithm

DDnew algorithm
for the 2PACF between

the float-based implementation and the new algorithm for the CFHTLenS input file (106

galaxies). The histogram is composed of 256 bins: 16 degrees with 16 bins per degree.

ally to the 3PACF, two other correlation functions: 2PACF and shear-shear correlation

are also employed in the study.

It is expected that the new data set will distribute the counts along all the bins of

the histogram. Due to this distribution, the observed deficit of counts in the bins in

the previous studies will be partially mitigated. However, it can not be stemmed from

the data set which bins will approach the float sensitive limit, and therefore, in which

the deficit will appear.

6.5.3.1 Two-Point Angular Correlation Function

Considering that the new algorithm has demonstrated to correctly reproduce the num-

ber of counts per bin up to very large figures; then any deviation from these values will

be attributed to the inexactness occurred in the float-based implementation. In order

to underline this deviation, the relative error, 100 · DDfloat−based−DDnew algorithm

DDnew algorithm
, for the

2PACF is shown at Fig. 6.8.

As can be appreciated at Fig. 6.8, some differences appear between the number

of counts calculated for both implementations1. In spite of the no-null values of the

relative error, presently they are far from to be significant for the current cosmological

calculations.

The float-based implementation reproduces acceptably well the number of counts

per bin (Fig. 6.8), being the relative error below the threshold of the instrumental

1In this case, the histogram covers up to 16 degrees with 16 bins per degree. Due to the reduced
area in the sky covered by the survey CFHTLenS, counts above the 160th bin does not exist.

135

Astro/figures/./2PACF_test_CFHTLens_106_comparative.eps

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

errors. The relative error is low enough to validate the previous works performed with

the float-based implementation [13, 18]. However, since the new algorithm does not

increase the execution time, while improving the bin containment, it is recommended

for the analysis of the 2PACF.

A collateral effect of the float-based implementation is that the repetition of the

executions produces variations of one unit in the last significant digit of the counts

accumulated in the bins. Again the origin of this effect is the float-representation.

When gathering the counts accumulated in the sub-histograms, the order of the addition

becomes relevant1. Depending on the order in which the atomicAdd() operations are

executed, a difference of one unit in the last significant digit might occur. If the bins

with large number of counts are firstly added, then when adding the bins with tiny

number of counts, the lack of accuracy of the float-representation will emerge. However,

if the bins with the tiny number of counts are firstly planned, then the float-sensitiveness

will be enough to incorporate these values.

This effect is completely corrected in the new algorithm. At Fig. 6.9, the standard

deviation for each bin after 10 executions is shown for both implementations. As

can be appreciated, when using float-based implementation the values of the counts

accumulated per bin have a no-null dispersion (Fig. 6.9(a)). On the contrary, no

dispersion is drawn for the new algorithm (Fig. 6.9(b)).

6.5.3.2 Three-Point Angular Correlation Function

Similar tests to those performed in the previous section are executed, but instead of

the 2PACF, by using the 3PACF. This second function increases the stress over the

weaknesses of the float-based implementation, since more counts are accumulated per

galaxy in the input file2. Due to the large execution time of the 3PACF in relation to the

2PACF, for this study a randomly-selected sample of 104 galaxies has been extracted

from the CFHTLenS file.

In the case of the 3PACF (Fig. 6.10), the relative error for CFHTLenS data set

is larger, one order of magnitude, than for the 2PACF, even if a smaller input file is

employed. This increment stems from the higher computational intensity of the 3PACF

in relation to the 2PACF.

Alike to the 2PACF, for the 3PACF the dispersion of the counts accumulated per bin

disappears when the new algorithm is used, instead of the float-based implementation

1In general, when using float-representation is advised to sum the numbers in order, being the
smaller ones the first.

2If N identical points are processed with the 2PACF, then N2 counts are accumulated in the bin
zero. On the other hand, if this sample is processed with the 3PACF, then N3 counts are expected.

136

6.5 Improvement in the Precision of Histogram Calculation on GPU

0 50 100 150 200 250
Bin

0

1000

2000

3000

4000

5000

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

(a) Float-based implementation

0 50 100 150 200 250
Bin

80.0010

80.0005

0.0000

0.0005

0.0010

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

(b) New algorithm

Figure 6.9: Standard deviation for the 2PACF for 10 runs of the float-based implemen-
tation a) and the new algorithm b). The new algorithm reproduces always an identical
result, therefore its standard deviation is null; whereas in the float-based implementation
the last significant digit varies among the executions.

137

Astro/figures/./2PACF_CFHTLens_106_ds_DD1.eps
Astro/figures/./2PACF_CFHTLens_106_ds_DD2F.eps

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

0 50 100 150 200 250
Bin

90.008

90.006

90.004

90.002

0.000

0.002

0.004

R
e
la

ti
v
e
 e

rr
o
r

Figure 6.10: Relative error, 100 · DDfloat−based−DDnew algorithm

DDnew algorithm
for the 3PACF between the

float-based implementation and the new algorithm for a sub-set of the CFHTLenS input
file (104 galaxies in this test). The histogram is composed of 256 bins: 1 bin per degree,
with up to the 8th degree per angle in the triplets.

(Fig. 6.11). When using the float-based implementation (Fig. 6.11(a)), the counts per

bin exhibit a clear dispersion of the values; whereas, this dispersion is not present when

the new algorithm is employed (Fig. 6.11(b)).

The dispersion of results, stemmed from the inexactness of the float representation,

disappears when using the proposed implementation. Both 2PACF and 3PACF produce

more accurate results when using this new implementation, at the same time that it

maintains a limited execution time.

6.5.3.3 Shear-Shear Correlation Function

As a final analysis, the shear-shear correlation function is also studied by using both

implementations: the float-based and the new algorithm. Three main quantities or

histograms are calculated during the shear-shear analysis: the number of pairs, ξ+,

and ξ−. Oppositely to the previous studies, where a unit is added to the bin for each

coincidence, in the histograms of ξ+, and ξ− tiny non-integer values are added to the

bins.

As can be appreciated at Fig. 6.12, for ξ+, and ξ− the float-based implementation

produces different results to the new algorithm. Again the differences stem from the

lack of accuracy of the float representation. Besides, similar to the previous studies,

the relative error is low enough to still validate the cosmological analysis performed

[14]. However, the proposed alternative is able to deal with larger data sets with higher

138

Astro/figures/./3PACF_test_CFHTLens_104_comparative.eps

6.5 Improvement in the Precision of Histogram Calculation on GPU

0 50 100 150 200 250
Bin

0

500

1000

1500

2000

2500

3000

3500

4000

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

(a) Float-based implementation

0 50 100 150 200 250
Bin

:0.06

:0.04

:0.02

0.00

0.02

0.04

0.06

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

(b) New algorithm

Figure 6.11: Standard deviation for the 3PACF and a sub-set of 104 galaxies of the
CFHTLenS data set for 10 runs of the float-based implementation a) and the new algo-
rithm b). The new algorithm reproduces always an identical result, therefore its standard
deviation is null; whereas in the float-based implementation the last significant digit varies
among the executions.

139

Astro/figures/./3PACF_CFHTLens_104_ds_DDD1.eps
Astro/figures/./3PACF_CFHTLens_104_ds_DDD2F.eps

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

precision by employing similar execution time, and for this reason, it is recommended

for future analysis.

0 20 40 60 80 100 120
Bin

;0.002

;0.001

0.000

0.001

0.002

0.003

0.004

R
e
la

ti
v
e
 e

rr
o
r

(a) ξ+

0 20 40 60 80 100 120
Bin

<0.02

0.00

0.02

0.04

0.06

0.08

0.10

R
e
la

ti
v
e
 e

rr
o
r

(b) ξ−

Figure 6.12: Relative error, 100 · ξfloat−based−ξnew algorithm

ξnew algorithm
for the parameters involved in

the shear-shear correlation function (ξ+, ξ−) between the float-based implementation and
the new algorithm for the CFHTLenS input file (106 galaxies), for: a) ξ+, and b) ξ−.

The study of the ξ+ (Fig. 6.12(a)) shows a similar order of magnitude in the relative

error as the 2PACF. However, the relative error for ξ− (Fig. 6.12(b)) is much higher.

The origin of this higher relative error is that ξ− is very close to zero, so that the

division of the relative error calculation magnifies its value.

Since in the previous studies the absence of dispersion in the final results, when

implementing the new algorithm, has been demonstrated, this study has not been

140

Astro/figures/./shear_test_CFHTLens_106_comparative_xip.eps
Astro/figures/./shear_test_CFHTLens_106_comparative_xim.eps

6.6 Conclusions

repeated for the shear-shear correlation function.

6.6 Conclusions

The application of the GPU computing to the correlation functions: two-point correla-

tion function and shear-shear correlation function has allowed accelerating these anal-

yses. Faced to other parallel implementations or other approaches such as kd-trees, the

GPU implementations for these problems achieve larger speedups.

Simultaneously, the weaknesses associated to the number representation and its

impact in the accuracy of the histogram construction in GPU have been studied. The

new algorithm proposed for the histogram construction on GPU allows circumventing

these weaknesses, without degrading the execution time. Beyond the applicability to

cosmological studies, this new algorithm can be applied to other disciplines where the

construction of histograms is an essential part of the analysis, such as: image processing,

data mining or statistical analysis.

As a consequence of the quality of the implementations, they are being adopted as

analysis codes by international collaborations.

141

6. APPLICATION OF GPU COMPUTING TO ASTROPHYSICS
PROBLEMS

142

Chapter 7

Conclusions

7.1 Conclusions

T
his Thesis presents diverse studies focused on the improvement of the efficiency of

the scientific computation in the areas of astrophysics, astronomy and cosmology.

Firstly, exploratory studies have been performed to in-depth analyse particular objec-

tives. These studies have been useful to gain the necessary expertise to evaluate the

applicability of these techniques to problems in the scientific areas involved.

Some of the exploratory studies have evaluated and demonstrated how to accelerate

the performance of Particle Swarm Optimizer when executing on GPU, the efficiency of

the most popular variants of this algorithm, and the improvements when implementing

a multipopulation approach for this algorithm.

Other studies have focussed on the impact of the choice of the random number

generator on the efficiency of evolutionary algorithms, such as: particle swarm opti-

mizer, differential evolution and genetic algorithm. The conclusions underline the low

sensitiveness of the evolutionary algorithms when implementing high-quality random

number generators. Furthermore, a technique to reduce the large execution times as-

sociated to metaoptimization processes has been also proposed.

Besides, an in-depth study of the most suitable layouts for accelerating the evalua-

tion of non-separable functions on GPU has been performed. This study demonstrates

how an appropriate layout reduces the processing time when evaluating this kind of

functions on GPU. The lessons learned from these exploratory studies have been later

applied to problems in the areas of astrophysics, astronomy and cosmology.

Concerning the searching of high-quality solutions for fitting problems in astro-

physics, the applicability of metaheuristics to these problems has been widely demon-

strated. The works performed in the rotational curve of the spiral galaxies and the

143

7. CONCLUSIONS

low-resolution galaxy spectral energy distribution have shown how the application of

metaheuristics might improve the quality of the solutions achieved.

Finally, the porting and optimization of cosmological calculations, such as the two-

point angular correlation function and the shear-shear correlation function, have al-

lowed a net improvement in the efficiency of these analyses. The new implementations

improve the quality of the scientific production by speeding up the analyses, while

maintaining the accuracy.

The results obtained have been published in conferences on metaheuristics, paral-

lelism and astrophysics, as well as in computational physics and computing journals.

Furthermore, some computational developments are being adopted by international

collaborations.

7.2 Future Work

Diverse lines of work are open beyond the results presented in this Thesis. In some

cases, they represent further explorations of issues already treated. In these issues, the

aim is to check if new refinements improve the efficiency of the solutions proposed. In

other cases, they are new developments or new problems where the application of the

lessons learned, might suppose an advance in relation to the state-of-the-art.

For instance, other analyses in cosmology might be ported and optimized to parallel

infrastructures. The works performed on GPU have been specially successful. As ongo-

ing work, it has been proposed the implementation of a two-point correlation function

in three dimensions. A priory, this calculation is burdened with a high-computational

charge due to the trigonometric calculations required. Similar improvements to those

reached with the shear-shear calculation are expected.

On the other hand, evolutionary algorithms can be applied to the analysis of com-

plex images and data sets in astrophysics, for example those coming from IFUs facilities.

The analysis of data in this area faces two main difficulties: the complexity and the high

volume. In these cases, the hybridization of evolutionary algorithms and techniques of

parallelism is mandatory. International collaborations such as CALIFA or data repos-

itories such as the Sloan Digital Sky Survey provide large data volumes which require

the appropriate tools to accurately analyse the data with an affordable execution time

budget.

Finally, the exploratory studies presented in this Thesis in evolutionary algorithms

and parallelism, as well as in the hybridization of both techniques have inspired other

ideas which have not been fully developed. For instance, improvements in the layouts

144

7.2 Future Work

for accelerating the evaluation of non-separable functions and other complex fitness

functions on GPU can be produced by implementing further refinements.

145

7. CONCLUSIONS

146

Appendix A

Publications

This section lists the publications obtained during the Thesis period.

A.1 JCR-indexed Journal Articles Arising from this The-

sis

1. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Bonnett, Christopher,

Sevilla-Noarbe, Ignacio, Ponce, Rafael, Sánchez Álvaro, Eusebio, Rodŕıguez-

Vázquez, Juan José: GPU-Based Shear-Shear Correlation Calculation,

Computer Physics Communications, 185(1):11-18, ISSN: 0010-4655, 2014 (Im-

pact Factor = 3.078, 2012, Quartile Q1)

2. Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan José, Vega-Rodŕıguez, Mi-

guel A., Sevilla-Noarbe, Ignacio, Sánchez Álvaro, Eusebio: Performance and

precision of the histogram calculation on GPU: cosmological analy-

sis as case study, Computer Physics Communications, 1-27, ISSN: 0010-4655,

Accepted (Impact Factor = 3.078, 2012, Quartile Q1)

3. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A.: Effect of data layout

in the evaluation time of non-separable functions on GPU, Computing

and Informatics, 1-21, ISSN: 1335-9150, Accepted at 2014, to publish at 2015,

Accepted (Impact Factor = 0.254, 2012, Quartile Q4)

A.2 International Book Chapters Arising from this Thesis

1. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Mollá, Mercedes:

Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy

Distribution, HAIS, LNAI, Springer, 490-501, Eds: Polycarpou, Marios M.,

147

A. PUBLICATIONS

Carvalho, André C. P. L. F., Pan, Jeng-Shyang, Wozniak, Michal, Quintián-

Pardo, Héctor, and Corchado, Emilio, 2014

2. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Mollá, Mercedes:

Metaoptimization of Differential Evolution by Using Productions of

Low-Number of Cycles: The Fitting of Rotation Curves of Spiral

Galaxies as Case Study, HAIS, LNAI, Springer, 356-365, Eds: Pan, Jeng-

Shyang, Polycarpou, Marios M., Wozniak, Michal, Carvalho, André C. P. L. F.,

Quintián-Pardo, Héctor, and Corchado, Emilio, 2013

3. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Sevilla, Ignacio, Ponce,

Rafael, Rodŕıguez-Vázquez, Juan José, Sánchez Álvaro, Eusebio: Concurrent

CPU-GPU Code Optimization: The Two-Point Angular Correlation

Function as Case Study, CAEPIA, LNAI, Springer, 209-218, Eds: Bielza, C.;

Salmeron, A.; Alonso-Betanzos, A.; Hidalgo, J.I.; Mart́ınez, L.; Troncoso, A.;

Corchado, E.; Corchado, J.M., 2013

4. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Gómez-Iglesias, Anto-

nio: Real-World Problem for Checking the Sensitiveness of Evolution-

ary Algorithms to the Choice of the Random Number Generator, HAIS

(1), LNAI, Springer, 385-396, Eds: Corchado, Emilio, Snásel, Václav, Abraham,

Ajith, Wozniak, Michal, Graña, Manuel, and Cho, Sung-Bae, 2012

5. Cárdenas-Montes, Miguel, Mollá, Mercedes, Vega-Rodŕıguez, Miguel A., Rodŕı-

guez-Vázquez, Juan José, and Gómez-Iglesias, Antonio: Adjustment of Obser-

vational Data to Specific Functional Forms Using Particle Swarm Algo-

rithm and Differential Evolution: Rotational Curves of Spiral Galaxy

as Case Study, Astrostatistics and Data Mining, Springer, 81-88, 2012

6. Ponce, Rafael, Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan Jose, Sevilla,

Ignacio: Application of GPUs for the Calculation of Two Point Cor-

relation Functions in Cosmology, Astronomical Data Analysis Software and

Systems XXI, Astronomical Society of the Pacific Conference Series, 461, 73-76,

2012

7. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Gómez-Iglesias, Anto-

nio: Sensitiveness of Evolutionary Algorithms to the Random Number

Generator, ICANNGA (1), LNCS, Springer, 371-380, Eds: Dobnikar, Andrej,

Lotric, Uros, and Ster, Branko, 2011

148

A.3 International Conference Proceedings Arising from this Thesis

8. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Vázquez, Juan

José, and Gómez-Iglesias, Antonio: Effect of the Block Occupancy in GPGPU

over the Performance of Particle Swarm Algorithm, ICANNGA (1), LNCS,

Springer, 310-319, Eds: Dobnikar, Andrej, Lotric, Uros, and Ster, Branko, 2011

9. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Vázquez, Juan

José, and Gómez-Iglesias, Antonio: GPU-Based Evaluation to Accelerate

Particle Swarm Algorithm, EUROCAST (1), LNCS, Springer, 272-279, Eds:

Moreno-Dı́az, Roberto, Pichler, Franz, and Quesada-Arencibia, Alexis, 2011

10. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

and Morales-Ramos, Enrique: Empirical Study of Performance of Parti-

cle Swarm Optimization Algorithms Using Grid Computing, Nature In-

spired Cooperative Strategies for Optimization, NICSO, Springer, 345-357, Eds:

González, Juan Ramón, Pelta, David A., Cruz, Carlos, Terrazas, Germán, and

Krasnogor, Natalio, 2010

11. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., and Gómez-Iglesias, Anto-

nio: Performance Improvement in Multipopulation Particle Swarm Al-

gorithm, Distributed Computing and Artificial Intelligence: 7th International

Symposium, DCAI, Springer, 533-540, Eds: Andre Ponce de Leon, F. de Car-

valho, Sara Rodŕıguez-González, Juan F. De Paz, and Juan M. Corchado, 2010

12. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Garćıa Orellana, Carlos

J., Rubio del Solar, Manuel, Gómez Pulido, Juan Antonio, González Velasco,

Horacio M., Gómez-Iglesias, Antonio, Sánchez-Pérez, Juan Manuel, and Maćıas

Maćıas, Miguel: Volunteer Computing, an Interesting Option for Grid

Computing: Extremadura as Case Study, OTM Workshops (1), LNCS,

Springer, 29-30, Eds: Meersman, Robert, Tari, Zahir, and Herrero, Pilar, 2007

A.3 International Conference Proceedings Arising from

this Thesis

1. Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan José, Vega-Rodŕıguez, Mi-

guel A., Sevilla, Ignacio, Sánchez Álvaro, Eusebio, Ponce, Rafael, Bonnett, Chris-

topher: High-Performance Implementations for Shear-Shear Correla-

tion Calculation. Cluster, IEEE Computer Society, 2014. Submitted.

149

A. PUBLICATIONS

2. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Westerholm, Jan, Ponce,

Rafael, Yurtesen, Evren, Sevilla, Ignacio, Sánchez Álvaro, Eusebio, Rodŕıguez-

Vázquez, Juan José, Aspnäs, Mats, Timonen, Ville, Colino, Nicanor, and Gómez-

Iglesias, Antonio: Calculation of Two-Point Angular Correlation Func-

tion: Implementations on Many-Core and Multicore Processors, Iber-

grid, Editorial Universitat Politecnica de Valencia, 203-214, 2013

3. Cárdenas-Montes, Miguel, Rodŕıguez-Vázquez, Juan Jose, Ponce, Rafael, Sevilla,

Ignacio, Sánchez Álvaro, Eusebio, Colino, Nicanor, and Vega-Rodŕıguez, Miguel

A.: New Computational Developments in Cosmology, Ibergrid, Labora-

torio de Instrumentaçao e F́ısica Experimental de Part́ıculas, 101-112, 2012

4. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Vázquez, Juan

Jose, and Gómez-Iglesias, Antonio: Accelerating Particle Swarm Algorithm

with GPGPU, 16th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing, PDP, IEEE Computer Society, 560-564, Eds:

Cotronis, Yiannis, Danelutto, Marco, and Papadopoulos, George Angelos, 2011

5. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rodŕıguez-Vázquez, Juan

José, and Gómez-Iglesias, Antonio: GPGPU-based Evaluation of Parti-

cle Swarm Algorithm for High-Dimensional Problems, EUROCAST 2011

Book of Abstracts, Universidad de Las Palmas de Gran Canaria, 252-253, Eds:

Quesada-Arencibia, Alexis, Rodŕıguez-Rodŕıguez, José Carlos, Moreno-Dı́az, Ro-

berto jr., and Moreno-Dı́az, Roberto, 2011

6. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

and Morales-Ramos, Enrique: Conjecture of Bateman Solver with Particle

Swarm Optimisation and Grid Computing, 3rd Iberian Grid Infrastructure

Conference, Ibergrid, Netbiblo, 269-280, 2009

7. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

Castejón-Magaña, Francisco, Arriero, Nicanor Colino, and Morales-Ramos, En-

rique: Grid Application Taxonomies and Models for its Adaptation, 3rd

Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo, 420-431, 2009

8. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

and Morales-Ramos, Enrique: Exploration of the Conjecture of Bateman

using Particle Swarm Optimization and Grid Computing, 8th Interna-

tional Symposium on Parallel and Distributed Computing, ISPDC, IEEE Com-

puter Society, 143-150, 2009

150

A.4 Other Publications Arising from this Thesis

9. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Garćıa Orellana, Carlos

J., Rubio del Solar, Manuel, Gómez-Pulido, Juan A., González Velasco, Hora-

cio, Gómez-Iglesias, Antonio, Sánchez-Pérez, Juan Manuel, and Maćıas Maćıas,

Miguel: The Fruitful Application of Volunteer Computing to Regions

with Low Scientific Funds: Extremadura as an Example, 2nd Iberian

Grid Infrastructure Conference, Ibergrid, Netbiblo, 129-140, 2008

10. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Rubio del Solar, Manuel,

and Gómez-Iglesias, Antonio: Bateman Conjecture’s Exploration on Grid

Computing, 2nd Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo,

371-377, 2008

A.4 Other Publications Arising from this Thesis

1. Cárdenas-Montes, Miguel, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

and Morales-Ramos, Enrique: Explorando la Conjetura de Bateman en un

Entorno Grid, XIX Jornadas de Paralelismo, Universitat Jaume I, 511-514, Sep

2008

A.5 Publications No-Related to PhD

1. Rodŕıguez-Vázquez, Juan José, Vázquez-Poletti, José Luis, Delgado-Méndez, Car-

los José, and Cárdenas-Montes, Miguel: Performance Evaluation of a Signal

Extraction Algorithm for the Cherenkov Telescope Array’s Real Time

Analysis Pipeline Cluster, IEEE Computer Society, 2014, Submitted

2. Cárdenas-Montes, Miguel: Depth-based Outlier Detection Algorithm, HAIS,

LNAI, Springer, 122-132, Eds: Polycarpou, Marios M., Carvalho, André C. P. L.

F., Pan, Jeng-Shyang, Wozniak, Michal, Quintián-Pardo, Héctor, and Corchado,

Emilio, 2014

3. Rodŕıguez-Vázquez, Juan José, and Cárdenas-Montes, Miguel: Performance

Assessment of a Chaos-based Image Cipher on Multi-GPU, Ibergrid,

Editorial Universitat Politecnica de Valencia, 592-599, 2013

4. Rodŕıguez-Vázquez, Juan José, and Cárdenas-Montes, Miguel: Speeding Up a

Chaos-Based Image Encryption Algorithm Using GPGPU, EUROCAST

(1), LNCS, Springer, 272-279, Eds: Moreno-Dı́az, Roberto, Pichler, Franz, and

Quesada-Arencibia, Alexis, 2011

151

A. PUBLICATIONS

5. Cárdenas-Montes, Miguel, Franco Valiente, José Miguel, Cortés Fácila, Álvaro,

Dı́az Corchero, Miguel Ángel, Gómez-Tostón Gutiérrez, Carolina, Mart́ınez Ra-

mı́rez, Adrián, Suárez Ortega, César, and Gómez Pulido, Juan Antonio: Po-

pulation-Based Incremental Learning Algorithm to Search for Magic

Squares, 5th Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo, 315-

326, 2011

6. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón, Francisco, and

Cárdenas-Montes, Miguel: Distributed and Asynchronous Bees Algorithm

Applied to Nuclear Fusion Research, PDP, IEEE Computer Society, 365-

372, Eds: Cotronis, Yiannis, Danelutto, Marco, and Papadopoulos, George An-

gelos, 2011

7. Rodŕıguez-Vázquez, Juan José, Cárdenas-Montes, Miguel, and Romero-Sánchez,

Sixto: Speeding Up a Chaotic Image Encryption Algorithm on GPU,

EUROCAST 2011 Book of Abstracts, Universidad de Las Palmas de Gran Ca-

naria, 132-133, Eds: Quesada-Arencibia, Alexis, Rodŕıguez-Rodŕıguez, José Car-

los, Moreno-Dı́az, Roberto jr., and Moreno-Dı́az, Roberto, 2011

8. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón, Francisco, and

Cárdenas-Montes, Miguel: Distributed and Asynchronous Bees Algorithm:

an Efficient Model for Large Scale Problems Optimizations, Distributed

Computing and Artificial Intelligence: 7th International Symposium, DCAI, Sprin-

ger, 381-388, 2010

9. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón, Francisco, Cár-

denas-Montes, Miguel, and Morales-Ramos, Enrique: Artificial Bee Colony

Inspired Algorithm Applied to Fusion Research in a Grid Computing

Environment, PDP, IEEE Computer Society, 508-512, Eds: Danelutto, Marco,

Bourgeois, Julien, and Gross, Tom, 2010

10. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, and Cárdenas-Montes, Miguel: Algoritmo de Abejas Aśıncrono y Dis-

tribuido, Actas de las XXI Jornadas de Paralelismo, Ibergarceta Publicaciones

S.L., Valencia, España, 905-911. ISBN: 978-84-92812-49-3, 2010

11. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón, Francisco, Cár-

denas-Montes, Miguel, and Morales-Ramos, Enrique: Evolutionary Computa-

tion and Grid Computing to Optimise Nuclear Fusion Devices, Cluster

Computing - The Journal of Networks, Software Tools and Applications 12(4),

152

A.5 Publications No-Related to PhD

Springer, 439-448, ISSN: 1386-7857, 2009 (Impact factor 0.695, 2009, Quartile

Q3)

12. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón, Francisco, Cárde-

nas-Montes, Miguel, Morales-Ramos, Enrique, and Reynolds, J. M.: Grid-based

Metaheuristics to Improve a Nuclear Fusion Device, Concurrency and

Computation: Practice and Experience 22(11), John Wiley & Sons, 1476-1493,

ISSN:1532-0626, 2009 (Impact factor 1.004, 2009, Quartile Q3)

13. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: Grid-Enabled

Mutation-Based Genetic Algorithm to Optimise Nuclear Fusion De-

vices, EUROCAST, Springer, 809-816, Eds: Moreno-Dı́az, Roberto, Pichler,

Franz, and Quesada-Arencibia, Alexis, 2009

14. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Cárdenas-Montes, Miguel,

Morales-Ramos, Enrique, and Castejón-Magaña, Francisco: Grid-Oriented Scat-

ter Search Algorithm, ICANNGA, Springer, 193-202, Eds: Kolehmainen,

Mikko, Toivanen, Pekka J., and Beliczynski, Bartlomiej, 2009

15. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: Scatter Search

and Grid Computing to Improve Nuclear Fusion Devices, Large-Scale

Scientific Computing, LNCS, Springer, 483-490, 2009

16. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: A Grid-Oriented

Crossover Genetic Algorithm to Optimise Nuclear Fusion Devices, 3rd

Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo, 281-290, 2009

17. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: Mutation-based

genetic algorithm and the grid to optimise nuclear fusion devices, EU-

ROCAST 2009 Book of Abstracts, Universidad de Las Palmas de Gran Ca-

naria, 280-281, Eds: Rodŕıguez-Rodŕıguez, José Carlos, Moreno-Dı́az, Roberto,

Quesada-Arencibia, Alexis, Moreno-Dı́az, Roberto jr.

18. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Sánchez-Pérez, Juan M., Cárdenas-Montes, Miguel, and Morales-Ramos,

Enrique: Implementación grid de algoritmo Scatter Search. Aplicación

153

A. PUBLICATIONS

a la optimización de dispositivos de fusión nuclear, XX Jornadas de Pa-

ralelismo, Servizo de Publicacións, Universidade da Coruña, A Coruña, Spain,

665-669. ISBN: 84-9749-346-8, 2009

19. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: Using a Genetic

Algorithm and the Grid to Improve Transport Levels in the TJ-II Stel-

larator, 7th International Symposium on Parallel and Distributed Computing,

ISPDC, IEEE Computer Society, 81-88, 2008

20. Rubio-Solar, Manuel, Vega-Rodŕıguez, Miguel A., Sánchez-Pérez, Juan Manuel,

Gómez-Iglesias, Antonio, and Cárdenas-Montes, Miguel: A FPGA Optimiza-

tion Tool Based on a Multi-island Genetic Algorithm Distributed over

Grid Environments, 8th IEEE International Symposium on Cluster Comput-

ing and the Grid, CCGrid, IEEE, 65-72, 2008

21. Fedak, Gilles, He, Haiwu, Lodygensky, Oleg, Balaton, Zoltan, Farkas, Zoltan,

Gombas, Gabor, Kacsuk, Peter, Lovas, Robert, Marosi, Attila Csaba, Kelley,

Ian, Taylor, Ian, Terstyanszky, Gabor, Kiss, Tamas, Cárdenas-Montes, Miguel,

Emmen, Ad, and Araujo, Filipe: EDGeS: A Bridge Between Desktop Grids

and Service Grids, Proceedings of The Third ChinaGrid Annual Conference

(chinagrid 2008), IEEE Computer Society, 3-9, 2008

22. Balaton, Zoltán, Farkas, Zoltan, Gombás, Gabor, Kacsuk, Péter, Lovas, Róbert,

Marosi, Csaba Attila, Emmen, Ad, Terstyánszky, Gábor, Kiss, Tamás, Kelley,

Ian, Taylor, Ian, Lodygensky, Oleg, Cárdenas-Montes, Miguel, Fedak, Gilles,

and Araujo, Filipe: EdgES: the Common Boundary between Service and

Desktop Grids, Parallel Processing Letters 18(3), 433-445, ISSN: 0129-6264,

2008

23. Castrillo, Francisco Prieto, Cárdenas-Montes, Miguel, and Rubio-Solar, Manuel:

gPhase: A Grid-based technology for the analysis of phase space struc-

ture in nonlinear dynamics. Applications to rocking systems under ar-

monic loading, 2nd Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo,

105-114, 2008

24. Castejón Magaña, Francisco, Cárdenas-Montes, Miguel, Gómez-Iglesias, Anto-

nio, Morales-Ramos, Enrique, Guillerminet, Bernard, Coster, David P., Son-

nendrücker, Eric, Campos-Plasencia, Isabel, Åström, Jan, Westerholm, Jan, Cela,

José M., Kos, Leon, Smith, Lorna, Plociennik, Marcin, Hardt, Marcus, Aspnäs,

154

A.5 Publications No-Related to PhD

Mats, Strand, Pär, and Stotzka, Rainer: EUFORIA: Grid and High Perfor-

mance Computing at the Service of Fusion Modelling, 2nd Iberian Grid

Infrastructure Conference, Ibergrid, Netbiblo, 115-126, 2008

25. Cárdenas-Montes, Miguel, Emmen, Ad, Csaba Marosi, Attila, Araujo, Filipe,

Gombás, Gábor, Terstyanszky, Gabor, Fedad, Gilles, Kelley, Ian, Taylor, Ian,

Lodygensky, Oleg, Kacsuk, Péter, Lovas, Robert, Kiss, Tamas, Balaton, Zoltán,

and Farkas, Zoltán: EDGeS: bridging Desktop and Service Grids, 2nd

Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo, 212-223, 2008

26. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Sánchez-Pérez, Juan Ma-

nuel, Cárdenas-Montes, Miguel, Rubio-Solar, Manuel, and Morales-Ramos, En-

rique: Grid Computing in Chess Endgames, 2nd Iberian Grid Infrastructure

Conference, Ibergrid, Netbiblo, 227-238, 2008

27. Lombraña González, Daniel, Fernández de Vega, Francisco, Trujillo, L., Olague,

G., Cárdenas-Montes, Miguel, Araujo, L., Castillo, P., Sharman, K., and Silva,

A.: Interpreted Applications within BOINC Infrastructure, 2nd Iberian

Grid Infrastructure Conference, Ibergrid, Netbiblo, 261-272, 2008

28. Antoli, B., Benito, D., Cárdenas-Montes, Miguel, Castejón-Magaña, F., Castella-

nos, C., Castelo, V., de Alfonso, C., de Miguel, T., Gavela, R., Hernandez, V.,

Herraiz, L., Ibar, J., Jimenez, L., Ramos, R., Rivero, A., Saenz, J.F., Serrano,

F., Rubio, M., Tarancón, A., and Vuillemin, P.: CIVICO. Citizen Volunteer

Infrastructure for Computing, 2nd Iberian Grid Infrastructure Conference,

Ibergrid, Netbiblo, 273-284, 2008

29. Morales-Ramos, Enrique, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

Cárdenas-Montes, Miguel, Gómez Pulido, Juan Antonio, and Sanchez-Bajo, Flo-

rentino: Peaks Detection in X-Ray Diffraction Profiles Using Grid Com-

puting, OTM Workshops, LNCS, Springer, 793-801, 2008

30. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, del Solar, Manuel Rubio, and Cárdenas-Montes, Miguel: Grid Com-

puting in Order to Implement a Three-Dimensional Magnetohydrody-

namic Equilibrium Solver for Plasma Confinement, PDP, IEEE Computer

Society, 435-439, 2008

155

A. PUBLICATIONS

31. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Cárdenas-Montes, Miguel, and Morales-Ramos, Enrique: Algoritmo Ge-

nético para la Optimización del Transporte en un Stellarator Utilizando

la Computación Grid, XIX Jornadas de Paralelismo, Universitat Jaume I, 515-

520, Sep 2008

32. Morales-Ramos, Enrique, Vega-Rodŕıguez, Miguel A., Gómez-Iglesias, Antonio,

Cárdenas-Montes, Miguel, Gómez Pulido, Juan Antonio, and Sanchez-Bajo, Flo-

rentino: Uso de la Computación Grid en el Reconocimiento de Picos en

Perfiles de Difracción de Rayos X, XIX Jornadas de Paralelismo, Universitat

Jaume I, 538-543, 2008

33. Cárdenas-Montes, Miguel: Desarrollo de Computación Grid Basada en

Software Libre, III Conferencia Internacional de Software Libre, 157-165, 2007

34. Cárdenas-Montes, Miguel, Perez-Griffo, Javier, Rubio del Solar, Manuel, and

Ramos, Raul: Management of a Grid Infrastructure in GLITE with Vir-

tualization, 1st Iberian Grid Infrastructure Conference, Ibergrid, Netbiblo, 313-

321, 2007

35. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Castejón-Magaña, Fran-

cisco, Rubio-Solar, Manuel, and Cárdenas-Montes, Miguel: Optimizing the

configuration of magnetic confinement devices with evolutionary algo-

rithms and grid computing, 3rd EELA Conference, 507-514, 2007

36. Gómez-Iglesias, Antonio, Vega-Rodŕıguez, Miguel A., Rubio del Solar, Manuel,

and Cárdenas-Montes, Miguel: Algoritmo Evolutivo para Finales de Aje-

drez en un Entorno Grid, XVIII Jornadas de Paralelismo, II Congreso Español

de Informática, Thomson-Paraninfo, Zaragoza, España, 507-514. ISBN: 978-84-

9732-593-6, 2007

37. Rubio del Solar, Manuel, Perez-Griffo, Javier, and Cárdenas-Montes, Miguel:

BOINC Developments in the Extremadura Centre of Advanced Tech-

nologies, Vértices, Ed. CIEMAT, ISSN: 1887-1461, 26-29, 2006.

156

Appendix B

Other Activities

This section lists the participation in teaching activities, research projects, program

committee of international conferences, and reviewer of JCR-indexed journals.

B.1 Teaching

I collaborated in the following tutorials, training courses and academic activities:

• One session at Máster F́ısica Teórica, ”F́ısica Experimental de Part́ıculas y Cos-

moloǵıa”, Universidad Complutense de Madrid, 2013-2014.

• Training activities, internal at CIEMAT (editions with duration varying from 12

to 25 hours). In most of the activities, I acted as proposer and coordinator of the

training activity:

– Gráficas, estad́ıstica y mineŕıa de datos con Python, 2013

– Técnicas de optimización aplicadas a problemas cient́ıfico-técnicos, (2010,

2012).

– Técnicas de programación en CUDA (GPU) aplicadas a problemas cient́ıfico-

técnicos, (2010, 2011).

– Python para cient́ıficos, (2 editions at 2010, 2011)

– Iniciación a la Computación Grid, (2010)

• Máster de Computación Grid y Paralelismo (University of Extremadura). In the

editions 2007-2008 and 2008-2009 I taught ”Fundamentos de Computación Grid

y Proyectos Actuales”. In the editions from 2009-2010 to 2013-2014, I taught

”Adaptación de Aplicaciones Grid para el Procesamiento de Imágenes”. In all

cases 3 credits was taught per year.

157

B. OTHER ACTIVITIES

• Training course at CIEMAT, in April 14th of 2009 focused on the optimisation of

large-scale problems with metaheuristics and the grid. Professor and Coordinator.

• Training —1 day— on CUDA programming during the Annual International

Tokamak Modelling at Lisbon during September 2010.

• Training —1 day— on CUDA programming during the EFDA Goal Oriented

Training in Theory (GOTiT) at the Max-Planck Institute for Plasma Physics

(IPP) in Garching, Germany during October 18-29, 2010.

• Summer course: Computación Inteligente Distribuida: La Naturaleza como Fuente

de Inspiración, 2008, Universidad de Extremadura.

• 16th EELA Tutorial for Grid Users, held in Badajoz, Spain, in November 12th

to the 14th of 2007. Professor and Coordinator.

• 15th EELA Tutorial for Grid Users, held in Mérida, Spain, in November 5th to

the 7th of 2007. Professor and Coordinator.

• 11th EELA Tutorial for Grid Users, held in Sevilla, Spain, in September 10th to

14th of 2007.

• 7th EELA Tutorial for Grid Users, held in Mérida, Spain, in November 7th to

the 9th of 2007.

• Summer course: Software Libre a Fondo, Computación Grid con Software Libre,

2007, Universidad de Extremadura.

• Round table on grid computing, Tendiendo Puentes en Computación Grid, 2007,

Universidad de Extremadura.

• Summer course: Las Fronteras de la Computación: desde el Grid hasta la Com-

putación Cuántica, 2006, Universidad de Extremadura.

B.2 Participation as Program Committee of International

Conferences

During the period of this Thesis, I have been member of the program committee for

the following international conferences:

• International Workshop on Parallelism in Bioinformatics (PBio 2014), in Cluster

(IEEE), Madrid, Spain, 2014.

158

B.3 Reviewer of JCR-indexed Journals

• 7th, 8th Iberian Grid Infrastructure Conference, corresponding to Ibergrid’13

(Lisbon) and Ibergrid’14 (Madrid).

• International Workshop on Parallelism in Bioinformatics (PBio 2013), in Eu-

roMPI (ACM), Madrid, Spain, 2013.

• 7th International Conference on Distributed and Parallel Systems (DAPSYS), in

Springer, Debrecen, Hungary, 2008

B.3 Reviewer of JCR-indexed Journals

• Parallel Computing (PARCO), Elsevier, ISSN: 0167-8191, Impact Factor: 1.311,

Quartile Q1. Special issue from PBio 2013.

B.4 Research Projects Participation

During the period of this Thesis, I have participated in the following research projects:

• Contribución Del CIEMAT al Tier-2 Español de CMS. FPA2005-07256-

C2-02. Founded by Ministerio de Educación y Ciencia, Proyectos I+D, acciones

estratégicas y eranets. From December 2005 to June 2008.

• EELA (E-science grid facility for Europe and Latin America). RI-22379.

Founded by European Commission, FP VII. From January 2006 to December

2007.

• EGEE-II (Enabling Grids for E-sciencE II). RI-031688. Founded by Euro-

pean Commission. FP VI. From May 2006 to April 2008.

• GRIDEX (Transformación de Códigos Cient́ıficos e Industriales a En-

tornos de Computación Distribuida). PRI06A223. Founded by III Plan

Regional de Investigación, Desarrollo e Innovación (PRI+D+I, 2005-2008), Junta

de Extremadura. From 2006 to 2008.

• Desarrollo y operación de un Tier-2 federado para el experimento CMS

(CIEMAT). FPA2007-66530-C02-02. Founded by Ministerio de Educación y

Ciencia, Plan Nacional de I+D+i, Proyectos I+D Acciones Estratégicas y Er-

anets. From October 2007 to October 2010.

• EGEE-III (Enabling Grids for EsciencE-III). RI-222667. Founded by Eu-

ropean Commission. FP VII. From May 2008 to April 2010.

159

B. OTHER ACTIVITIES

• EDGeS (Enabling Desktop Grids for eScience). FP7-2007-211727. Founded

by European Commission. FP VII. From January 2008 to December 2009.

• EUFORIA (EU fusion for ITER Applications). FP7-2007-211804. Founded

by European Comision. FP VII. From January 2008 to December 2010.

• Métodos Cinéticos en Plasmas de Fusión. ENE2008-06082. Founded by

Ministerio de Educación y Ciencia, Programa Nacional de Proyectos de Investi-

gación Fundamental en el Marco del Plan Nacional de I+D+i 2008-2011. From

January 2009 to December 2011.

• EGI-InSPIRE (European Grid Initiative: Integrated Sustainable Pan-

European Infrastructure for Researchers in Europe). RI-261323. Founded

by European Commission, FP VII. From May 2010 to December 2014.

• Centro de Procesado de Datos de Colisiones Hadrónicas del LHC:

TIER-2 Federado para el Experimento CMS. FPA2010-21638-C02-02. Foun-

ded by Ministerio de Ciencia e Innovación, Plan Nacional de I+D+i, Programa

Nacional de Proyectos de Investigación Fundamental. From 2011 to 2013.

• AstroMadrid. CAM S2009/ESP-1496. Founded by Comunidad de Madrid

(programas de actividades de I+D entre grupos de investigación de la Comunidad

de Madrid y convocatoria en tecnoloǵıas cofinanciada con Fondo Social Europeo).

From January 2010 to December 2014.

• VENUS-C (Virtual multidisciplinary EnviroNments USing Cloud in-

frastrutures). Founded by Engineering Ingegneria Informatica S.p.A., sub-

contracted, FP-VII. From January 2012 to December 2012.

At projects EELA, EDGES, and EUFORIA I participated in the elaboration of the

proposal of the projects. At projects EELA and EUFORIA I led a work package.

B.5 Other Merits

• Chairman at sessions: ”Hybrid Intelligent Systems for Data Mining and Appli-

cations” and ”Data Mining and Knowledge Discovery” at HAIS 2014 (Springer),

Salamanca.

• Presenter at session ”GPGPU Integration and GPGPU User Application Sup-

port” at EGI Community Forum 2014, Helsinki.

160

B.5 Other Merits

• Convener and presenter at session ”Bio-inspired Algorithms in Grid” at EGEE’09,

Barcelona.

• Coauthor of the poster ”Evolutionary Algorithm for Solving Chess Endgames in

Grid Environments” at EGEE’07, Budapest.

161

B. OTHER ACTIVITIES

162

Bibliography

[1] T. Abbott et al. The dark energy survey. AIP Conf. Proc., 842:989–991,

2005. 95

[2] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algo-

rithms. IEEE Trans. Evolutionary Computation, 6(5):443–462, 2002. 43

[3] Luca Amendola and Euclid Theory Working Group. Cosmology and

fundamental physics with the euclid satellite. Living Reviews in Relativity, 16(6),

2013. 95

[4] David P. Anderson. Boinc: A system for public-resource computing and stor-

age. In Proceedings of the 5th IEEE/ACM International Workshop on Grid Com-

puting, GRID ’04, pages 4–10, Washington, DC, USA, 2004. IEEE Computer

Society. 21

[5] D. Bard, M. Bellis, M.T. Allen, H. Yepremyan, and J.M. Kratochvil.

Cosmological calculations on the GPU. Astronomy and Computing, 1(0):17 – 22,

2013. 99, 100, 103

[6] Matthias Bartelmann and Peter Schneider. Weak gravitational lensing.

Physics Reports, 340(4–5):291 – 472, 2001. 97

[7] Jonathan Benjamin, Ludovic Van Waerbeke, Catherine Heymans,

Martin Kilbinger, Thomas Erben, Hendrik Hildebrandt, Henk Hoek-

stra, Thomas D. Kitching, Yannick Mellier, Lance Miller, Barn-

aby Rowe, Tim Schrabback, Fergus Simpson, Jean Coupon, Liping Fu,

Joachim Harnois-Draps, Michael J. Hudson, Konrad Kuijken, Elisa-

betta Semboloni, Sanaz Vafaei, and Malin Velander. CFHTLenS to-

mographic weak lensing: quantifying accurate redshift distributions. Monthly

Notices of the Royal Astronomical Society, 431(2):1547–1564, 2013. 116

163

BIBLIOGRAPHY

[8] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing:

Making the Global Infrastructure a Reality. John Wiley & Sons, Inc., New York,

NY, USA, 2003. 17

[9] G. M. Bernstein and M. Jarvis. Shapes and shears, stars and smears: Opti-

mal measurements for weak lensing. The Astronomical Journal, 123(2):583–618,

2002. 98

[10] Mauro Birattari. Tuning Metaheuristics - A Machine Learning Perspective,

197 of Studies in Computational Intelligence. Springer, 2009. 70

[11] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varren-

trapp. A racing algorithm for configuring metaheuristics. In GECCO 2002:

Proceedings of the Genetic and Evolutionary Computation Conference, New York,

USA, 9-13 July 2002, pages 11–18. Morgan Kaufmann, 2002. 70

[12] Erick Cantú-Paz. On random numbers and the performance of genetic algo-

rithms. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO, pages 311–318. Morgan Kaufmann, 2002. 16, 70

[13] Miguel Cárdenas-Montes, Juan Jose Rodŕıguez-Vázquez, Rafael

Ponce, Ignacio Sevilla, Eusebio Sánchez, Nicanor Colino, and Mi-

guel A. Vega-Rodŕıguez. New computational developments in cosmology. In

6th Iberian Grid Infrastructure Conference Proceedings, Ibergrid, pages 101–112,

Lisbon. Portugal, 2012. Laboratório de Instrumentaçao e F́ısica Experimental de

Part́ıculas. 101, 128, 136

[14] Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez, Christopher

Bonnett, Ignacio Sevilla-Noarbe, Rafael Ponce, Eusebio Sánchez

Álvaro, and Juan José Rodŕıguez-Vázquez. GPU-based shear-shear corre-

lation calculation. Computer Physics Communications, 185(1):11–18, 2014. 101,

128, 133, 138

[15] Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez, and Antonio

Gómez-Iglesias. Sensitiveness of evolutionary algorithms to the random number

generator. In Andrej Dobnikar, Uros Lotric, and Branko Ster, editors,

Adaptive and Natural Computing Algorithms - 10th International Conference,

ICANNGA 2011, Ljubljana, Slovenia, April 14-16, 2011, Proceedings, Part I,

6593 of Lecture Notes in Computer Science, pages 371–380. Springer, 2011. 74

164

BIBLIOGRAPHY

[16] Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez, Antonio

Gómez-Iglesias, and Enrique Morales-Ramos. Empirical study of per-

formance of particle swarm optimization algorithms using grid computing. In

Nature Inspired Cooperative Strategies for Optimization, NICSO, 284 of Studies

in Computational Intelligence, pages 345–357. Springer, 2010. 27

[17] Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez, Ignacio Se-

villa, Rafael Ponce, Juan José Rodŕıguez-Vázquez, and Euse-

bio Sánchez Álvaro. Concurrent CPU-GPU code optimization: The two-point

angular correlation function as case study. In Advances in Artificial Intelligence -

15th Conference of the Spanish Association for Artificial Intelligence, CAEPIA,

8109 of Lecture Notes in Computer Science, pages 209–218. Springer, 2013. 101,

128

[18] Miguel Cárdenas-Montes, Miguel A. Vega-Rodŕıguez, Jan West-

erholm, Rafael Ponce, Evren Yurtesen, Ignacio Sevilla, Euse-

bio Sánchez Alvaro, Juan José Rodŕıguez-Vázquez, Mats Aspnas,

Ville Timonen, Nicanor Colino, and Antonio Gómez-Iglesias. Cal-

culation of two-point angular correlation function: Implementations on many-

core and multicore processors. In 7th Iberian Grid Infrastructure Conference

Proceedings, Ibergrid, pages 203–214, Madrid. Spain, 2013. Editorial Universitat

Politecnica de Valencia. 101, 128, 136

[19] P Charbonneau. Genetic algorithms in astronomy and astrophysics. The As-

trophysical Journal Supplement Series, 101:309–334, 1995. 69

[20] R. Cid Fernandes, A. Mateus, L. Sodré, G. Stasińska, and J. M.

Gomes. Semi-empirical analysis of Sloan Digital Sky Survey galaxies - I. Spectral

synthesis method. Monthly Notices of the Royal Astronomical Society, 358:363–

378, April 2005. 69

[21] R. Cid Fernandes, E. Pérez, R. Garćıa Benito, R. M. González Del-

gado, A. L. de Amorim, S. F. Sánchez, B. Husemann, J. Falcón Bar-

roso, P. Sánchez-Blázquez, C. J. Walcher, and D. Mast. Resolving

galaxies in time and space: I: Applying starlight to califa data cubes. Astron-

omy & Astrophysics, 557, Apr 2013. 68

[22] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. Evolutionary Computation,

IEEE Transactions on, 6(1):58–73, 2002. 16, 31

165

BIBLIOGRAPHY

[23] Charlie Conroy. Modeling the panchromatic spectral energy distributions of

galaxies. Annual Review of Astronomy and Astrophysics, 51(1):393–455, 2013.

68

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995. 57

[25] Lucas de P. Veronese and Renato A. Krohling. Differential evolution

algorithm on the GPU with C-CUDA. In IEEE Congress on Evolutionary Com-

putation, CEC, pages 1–7. IEEE, 2010. 41

[26] Kusum Deep and Jagdish Chand Bansal. Mean particle swarm optimisation

for function optimisation. Int. J. Comput. Intell. Stud., 1(1):72–92, May 2009.

16

[27] Russell C. Eberhart. Computational Intelligence: Concepts to Implementa-

tions. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. 16

[28] T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans,

H. Hoekstra, T. D. Kitching, Y. Mellier, J. Benjamin, C. Blake,

C. Bonnett, O. Cordes, J. Coupon, L. Fu, R. Gavazzi, B. Gillis,

E. Grocutt, S. D. J. Gwyn, K. Holhjem, M. J. Hudson, M. Kilbinger,

K. Kuijken, M. Milkeraitis, B. T. P. Rowe, T. Schrabback, E. Sem-

boloni, P. Simon, M. Smit, O. Toader, S. Vafaei, E. van Uitert, and

M. Velander. CFHTLenS: the Canada–France–Hawaii telescope lensing survey

– imaging data and catalogue products. Monthly Notices of the Royal Astronom-

ical Society, 433(3):2545–2563, 2013. 116

[29] H. K. Eriksen, P. B. Lilje, A. J. Banday, and K. M. Górski. Estimating

n-point correlation functions from pixelized sky maps. The Astrophysical Journal

Supplement Series, 151(1):1–11, 2004. 99

[30] Fábio Fabris and Renato A. Krohling. A co-evolutionary differential evolu-

tion algorithm for solving min-max optimization problems implemented on GPU

using C-CUDA. Expert Syst. Appl., 39(12):10324–10333, 2012. 41

[31] Xiao feng Xie, Wen jun Zhang, and Zhi lian Yang. A dissipative particle

swarm optimization. In Congress on Evolutionary Computation, pages 1456–1461.

IEEE Computer Society, 2002. 16

166

BIBLIOGRAPHY

[32] L. Ferreira. Grid services programming and application enablement. Technical

report, IBM, 2004. 20

[33] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE

Trans. Comput., 21(9):948–960, September 1972. 18

[34] Maŕıa A. Franco, Natalio Krasnogor, and Jaume Bacardit. Speeding

up the evaluation of evolutionary learning systems using GPGPUs. In GECCO

’10: Proceedings of the 12th annual conference on Genetic and evolutionary com-

putation, pages 1039–1046, New York, NY, USA, 2010. ACM. 41

[35] Joshua Frieman, Michael Turner, and Dragan Huterer. Dark Energy

and the Accelerating Universe. Ann.Rev.Astron.Astrophys., 46:385–432, 2008. 95

[36] Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco

Herrera. A study of statistical techniques and performance measures for

genetics-based machine learning: accuracy and interpretability. Soft Comput.,

13(10):959–977, 2009. 8

[37] Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco

Herrera. A study on the use of non-parametric tests for analyzing the evo-

lutionary algorithms’ behaviour: a case study on the CEC’2005 special session

on real parameter optimization. J. Heuristics, 15(6):617–644, 2009. 7, 8

[38] David Goldberg. What every computer scientist should know about floating-

point arithmetic. ACM Comput. Surv., 23:5–48, March 1991. 103, 127

[39] Juan Gómez-Luna, José Maŕıa González-Linares, José Ignacio Bena-

vides, and Nicolas Guil. An optimized approach to histogram computation

on GPU. Mach. Vis. Appl., 24(5):899–908, 2013. 101

[40] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000. 8, 57, 92

[41] Catherine Heymans, Ludovic Van Waerbeke, Lance Miller, Thomas

Erben, Hendrik Hildebrandt, Henk Hoekstra, Thomas D. Kitching,

Yannick Mellier, Patrick Simon, Christopher Bonnett, Jean Coupon,

Liping Fu, Joachim Harnois-Déraps, Michael J. Hudson, Martin Kil-

binger, Koenraad Kuijken, Barnaby Rowe, Tim Schrabback, Elisa-

betta Semboloni, Edo van Uitert, Sanaz Vafaei, and Malin Velander.

CFHTLenS: the Canada–France–Hawaii telescope lensing survey. Monthly No-

tices of the Royal Astronomical Society, 427(1):146–166, 2012. 116, 134

167

BIBLIOGRAPHY

[42] H. Hildebrandt, T. Erben, K. Kuijken, L. van Waerbeke, C. Heymans,

J. Coupon, J. Benjamin, C. Bonnett, L. Fu, H. Hoekstra, T. D. Kitch-

ing, Y. Mellier, L. Miller, M. Velander, M. J. Hudson, B. T. P. Rowe,

T. Schrabback, E. Semboloni, and N. Beńıtez. CFHTLenS: improving the

quality of photometric redshifts with precision photometry. Monthly Notices of

the Royal Astronomical Society, 421(3):2355–2367, 2012. 116

[43] Henk Hoekstra, Marijn Franx, Konrad Kuijken, and Pieter G.

Van Dokkum. HST large-field weak lensing analysis of ms 2053–04: study of the

mass distribution and mass-to-light ratio of X-ray luminous clusters at 0.22<z

<0.83. Monthly Notices of the Royal Astronomical Society, 333(4):911–922, 2002.

99

[44] Henk Hoekstra and Bhuvnesh Jain. Weak gravitational lensing and its cos-

mological applications. Annual Review of Nuclear and Particle Science, 58(1):99–

123, 2008. 98

[45] IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor

Standards Committee of the IEEE Computer Society, August 2008. 127

[46] M. Jarvis, G. Bernstein, and B. Jain. The skewness of the aperture mass

statistic. Monthly Notices of the Royal Astronomical Society, 352(1):338–352,

2004. 100

[47] Jelte T.A. Jong, Gijs A. Verdoes Kleijn, Konrad H. Kuijken, and

Edwin A. Valentijn. The kilo-degree survey. Experimental Astronomy, 35(1-

2):25–44, 2013. 95

[48] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE In-

ternational Conference on Neural Networks, 4, pages 1942–1948 vol.4. IEEE,

November 1995. 16

[49] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, November 1998. 10, 23

[50] Martin Kilbinger, Liping Fu, Catherine Heymans, Fergus Simpson,

Jonathan Benjamin, Thomas Erben, Joachim Harnois-Déraps, Henk

Hoekstra, Hendrik Hildebrandt, Thomas D. Kitching, Yannick Mel-

lier, Lance Miller, Ludovic Van Waerbeke, Karim Benabed, Chris-

topher Bonnett, Jean Coupon, Michael J. Hudson, Konrad Kuijken,

Barnaby Rowe, Tim Schrabback, Elisabetta Semboloni, Sanaz Vafaei,

168

BIBLIOGRAPHY

and Malin Velander. CFHTLenS: combined probe cosmological model com-

parison using 2D weak gravitational lensing. Monthly Notices of the Royal As-

tronomical Society, 430(3):2200–2220, 2013. xxi, 97, 98

[51] Volodymyr V. Kindratenko, Adam D. Myers, and Robert J. Brun-

ner. Implementation of the two-point angular correlation function on a high-

performance reconfigurable computer. Sci. Program., 17:247–259, August 2009.

99

[52] S. D. Landy and A. S. Szalay. Bias and variance of angular correlation

functions. American Journal of Physics, 412:64–71, July 1993. 96

[53] E. Laure, S.M. Fisher, A. Frohner, C. Grandi, and P. Kunszt. Pro-

gramming the grid with glite. Computational Methods in Science and Technology,

12(1):33–45, 2006. 10

[54] R. Laureijs, J. Amiaux, S. Arduini, J.-L. Augueres, J. Brinchmann,

et al. Euclid Definition Study Report. ESA report, 2011. 95

[55] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU-based

island model for evolutionary algorithms. In Genetic and Evolutionary Compu-

tation Conference, GECCO, pages 1089–1096. ACM, 2010. 42

[56] Oden Maron and Andrew W. Moore. The racing algorithm: Model selection

for lazy learners. Artif. Intell. Rev., 11(1-5):193–225, February 1997. 69

[57] I. Marquez et al. Rotation curves and metallicity gradients from HII regions

in spiral galaxies. Astron. Astrophys., 393:389–408, 2002. 78

[58] Ab́ılio Mateus, Laerte Sodré, Roberto Cid Fernandes, Grazyna

Stasińska, William Schoenell, and Jean M. Gomes. Semi-empirical analy-

sis of sloan digital sky survey galaxies – ii. the bimodality of the galaxy population

revisited. Monthly Notices of the Royal Astronomical Society, 370(2):721–737,

2006. 68

[59] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-

dimensionally equidistributed uniform pseudo-random number generator. ACM

Trans. Model. Comput. Simul., 8(1):3–30, 1998. 8, 44, 77, 81

[60] R.E. Mercer and J.R. Sampson. Adaptive search using a reproductive meta-

plan. Kybernetes, 7:215–228, 1978. 69

169

BIBLIOGRAPHY

[61] Mark M. Meysenburg and James A. Foster. The quality of pseudo-random

number generations and simple genetic algorithm performance. In Thomas

Bäck, editor, Proceedings of the 7th International Conference on Genetic Al-

gorithms, ICGA, pages 276–282. Morgan Kaufmann, 1997. 15

[62] Mark M. Meysenburg and James A. Foster. Randomness and GA perfor-

mance, revisited. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben,

Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith,

editors, Proceedings of the Genetic and Evolutionary Computation Conference, 1,

pages 425–432, Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann. 16

[63] Mark Mathew Meysenburg, James Foster, Gene Saghi, John Dickin-

son, Richard T Jacobsen, and Jean’ne M. Shreeve. The Effect of Pseudo-

Random Number Generator Quality on the Performance of a Simple Genetic Al-

gorithm. Master’s thesis, University of Idaho, Idaho, 1997. 15

[64] Efrén Mezura-Montes, Jesús Velázquez-Reyes, and Carlos

A. Coello Coello. A comparative study of differential evolution vari-

ants for global optimization. In GECCO, Genetic and Evolutionary Computation

Conference, pages 485–492. ACM, 2006. 81

[65] L. Miller, C. Heymans, T. D. Kitching, L. van Waerbeke, T. Erben,

H. Hildebrandt, H. Hoekstra, Y. Mellier, B. T. P. Rowe, J. Coupon,

J. P. Dietrich, L. Fu, J. Harnois-Draps, M. J. Hudson, M. Kilbinger,

K. Kuijken, T. Schrabback, E. Semboloni, S. Vafaei, and M. Velander.

Bayesian galaxy shape measurement for weak lensing surveys – III. application

to the Canada–France–Hawaii telescope lensing survey. Monthly Notices of the

Royal Astronomical Society, 429(4):2858–2880, 2013. 116

[66] M. Mollá, M. L. Garćıa-Vargas, and A. Bressan. PopStar I: evolutionary

synthesis model description. Monthly Notices of the Royal Astronomical Society,

398:451–470, September 2009. 86

[67] D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for

Engineers. John Wiley and Sons Ltd, New York, USA, 2002. 72

[68] Andrew W. Moore, Andy J. Connolly, Chris Genovese, Alex Gray,

Larry Grone, Nick Kanidoris II, Robert C. Nichol, Jeff Schneider,

Alex S. Szalay, Istvan Szapudi, and Larry Wasserman. Fast algorithms

and efficient statistics: N-point correlation functions. In AnthonyJ. Banday,

170

BIBLIOGRAPHY

Saleem Zaroubi, and Matthias Bartelmann, editors, Mining the Sky, ESO

ASTROPHYSICS SYMPOSIA, pages 71–82. Springer Berlin Heidelberg, 2001.

99, 100

[69] Luca Mussi, Fabio Daolio, and Stefano Cagnoni. Evaluation of parallel

particle swarm optimization algorithms within the CUDA architecture. Inf. Sci.,

181(20):4642–4657, 2011. 41

[70] Luca Mussi, Youssef S. G. Nashed, and Stefano Cagnoni. GPU-based

asynchronous particle swarm optimization. In 13th Annual Genetic and Evolu-

tionary Computation Conference, GECCO, pages 1555–1562. ACM, 2011. 41

[71] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and

Bart Mesman. High performance predictable histogramming on GPUs: explor-

ing and evaluating algorithm trade-offs. In Proceedings of 4th Workshop on Gen-

eral Purpose Processing on Graphics Processing Units, GPGPU, page 1. ACM,

2011. 101, 102

[72] Ender Ozcan, Selmanipak Cad, Tophanelioglu Sok No, and

Chilukuri K. Mohan. Particle swarm optimization: Surfing the waves. In Pro-

ceedings of the Congress on Evolutionary Computation, pages 6–9. IEEE Press,

1999. 16, 31

[73] Magnus Erik Hvass Pedersen. Good Parameters for Differential Evolution.

Technical Report no. HL1002, Hvass Laboratories, University of Zurich, Depart-

ment of Informatics, 2010. 70

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Ma-

chine Learning Research, 12:2825–2830, 2011. 8

[75] T. Peram, K. Veeramachaneni, and C. K. Mohan. Fitness-distance-ratio

based particle swarm optimization. In Proc. IEEE Swarm Intelligence Sympo-

sium, pages 174–181, April 2003. 16

[76] Victor Podlozhnyuk. Histogram calculation in CUDA. NVIDIA Corporation

White Paper, 2007. 100, 101, 128

171

BIBLIOGRAPHY

[77] R. Ponce, M. Cárdenas-Montes, J. J. Rodŕıguez-Vázquez, E. Sánchez,

and I. Sevilla. Application of GPUs for the Calculation of Two Point Corre-

lation Functions in Cosmology. In P. Ballester, D. Egret, and N. P. F.

Lorente, editors, Astronomical Data Analysis Software and Systems XXI, 461

of Astronomical Society of the Pacific Conference Series, pages 73–76, September

2012. 101, 128

[78] Petr Posṕıchal, Jiŕı Jaros, and Josef Schwarz. Parallel genetic algo-

rithm on the CUDA architecture. In Applications of Evolutionary Computation,

EvoApplications (1), 6024 of Lecture Notes in Computer Science, pages 442–451.

Springer, 2010. 41

[79] Petr Posṕıchal, Josef Schwarz, and Jiŕı Jaros. Parallel genetic algorithm

solving 0/1 knapsack problem running on the GPU. In 16th International Confer-

ence on Soft Computing MENDEL, pages 64–70. Brno University of Technology,

2010. 41

[80] William Press, Brian Flannery, Saul Teukolsky, and William Vet-

terling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, 1992. 9, 72

[81] K. V. Price, R. Storn, and J. Lampinen. Differential Evolution: A practical

Approach to Global Optimization. Springer-Verlag, Berlin, Germany, 2005. 80,

81

[82] Mikhail Rabinovich, Phillip Kainga, David Johnson, Brandon Shafer,

Jaehwan John Lee, and Rusell Eberhart. Particle swarm optimization on

a GPU. In IEEE International Conference on Electro/Information Technology,

EIT, pages 1–6. IEEE, 2012. 41

[83] J. Riget and J.S. Vesterstroem. A diversity-guided particle swarm optimizer

- the ARPSO. Technical Report no. 2002-02, Aarhus Universitet, 2002. 16

[84] Dylan W. Roeh, Volodymyr V. Kindratenko, and Robert J. Brunner.

Accelerating cosmological data analysis with graphics processors. In Proceedings

of 2nd Workshop on General Purpose Processing on Graphics Processing Units,

GPGPU-2, pages 1–8, New York, NY, USA, 2009. ACM. 99, 103

[85] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction

to General-Purpose GPU Programming. Addison-Wesley Professional, 1 edition,

July 2010. 101, 104, 115, 128

172

BIBLIOGRAPHY

[86] Thorsten Scheuermann and Justin Hensley. Efficient histogram genera-

tion using scattering on GPUs. In Proceedings of the 2007 symposium on Inter-

active 3D graphics and games, I3D ’07, pages 33–37, New York, NY, USA, 2007.

ACM. 101

[87] R. Shams and R. A. Kennedy. Efficient histogram algorithms for NVIDIA

CUDA compatible devices. In Proc. Int. Conf. on Signal Processing and Commu-

nications Systems (ICSPCS), pages 418–422, Gold Coast, Australia, December

2007. 101, 102

[88] Yun-Wei Shang and Yu-Huang Qiu. A note on the extended rosenbrock

function. Evolutionary Computation, 14(1):119–126, 2006. 55

[89] D. Sheskin. Handbook of parametric and nonparametric statistical procedures.

CRC Press, fifth edition, 2011. 7

[90] L. Smarr and C. Catlett. Metacomputing. Communication of the ACM,

35:44–52, 1992. 10

[91] Selmar K. Smit and A. E. Eiben. Comparing Parameter Tuning Methods

for Evolutionary Algorithms. In IEEE Congress on Evolutionary Computation

(CEC), pages 399–406, May 2009. 70

[92] Rainer Storn and K. V. Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. J. of Global Optimiza-

tion, 11(4):341–359, 1997. 80, 81

[93] István Szapudi and Alexander S. Szalay. A New Class of Estimators for

the N-Point Correlations. The Astrophysical Journal Letters, 494(1):41–44, 1998.

97

[94] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M.

Chen, and Z. Yang. Benchmark functions for the CEC 2008 special session

and competition on large scale global optimization. Technical report, Nature

Inspired Computation and Applications Laboratory, USTC, China, 2007. 44, 55

[95] Ke Tang, Xiaodong Li, Ponnuthurai N. Suganthan, Zhenyu Yang, and

Thomas Weise. Benchmark functions for the CEC’2010 special session and

competition on large-scale global optimization. Technical report, Nature Inspired

Computation and Applications Laboratory (NICAL), School of Computer Science

and Technology, University of Science and Technology of China (USTC), Electric

173

BIBLIOGRAPHY

Building No. 2, Room 504, West Campus, Huangshan Road, Hefei 230027, Anhui,

China, 2009. 44, 55

[96] Pablo Vidal and Enrique Alba. Cellular genetic algorithm on graphic pro-

cessing units. In Nature Inspired Cooperative Strategies for Optimization, NICSO,

284 of Studies in Computational Intelligence, pages 223–232. Springer, 2010. 41

[97] C. J. Walcher, B. Groves, T. Budavari, and D. Dale. Fitting the inte-

grated Spectral Energy Distributions of Galaxies. Astrophysics and Space Science,

331(1):1–51, 2011. 68

[98] D. Wells. Prime numbers: the most mysterious figures in math. Wiley, 1992.

16, 36

[99] Nathan Whitehead and Alex Fit-Florea. Precision and Performance:

Floating Point and IEEE 754 Compliance of NVIDIA GPUs. Technical report,

NVIDIA, 2011. 102, 127

[100] L. Darrell Whitley, Keith E. Mathias, Soraya B. Rana, and John

Dzubera. Building better test functions. In Proceedings of the 6th International

Conference on Genetic Algorithms, ICGA, pages 239–247. Morgan Kaufmann,

1995. 55, 56

[101] Xiao-Feng Xie, Wen-Jun Zhang, and Zhi-Lian Yang. Hybrid particle

swarm optimizer with mass extinction. In Communications, Circuits and Systems

and West Sino Expositions, IEEE 2002 International Conference on, 2, pages

1170–1173 vol.2, June 2002. 16

[102] B. Yuan and M. Gallagher. Combining Meta-EAs and Racing for Difficult

EA Parameter Tuning Tasks. In F.G. Lobo, C.F. Lima, and Z. Michalewicz,

editors, Parameter Setting in Evolutionary Algorithms, pages 121–142. Springer,

2007. 69

[103] You Zhou and Ying Tan. GPU-based parallel particle swarm optimization.

In IEEE Congress on Evolutionary Computation, CEC, pages 1493–1500. IEEE,

2009. 41

[104] You Zhou and Ying Tan. Particle swarm optimization with triggered mutation

and its implementation based on GPU. In Genetic and Evolutionary Computation

Conference, GECCO, pages 1–8. ACM, 2010. 41

174

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Organization of the Document

	2 Methods and Hardware
	2.1 Introduction
	2.2 Methods
	2.2.1 Statistics
	2.2.2 Support Vector Machine
	2.2.3 Random Number Generator
	2.2.3.1 Sensitiveness to the RNG

	2.3 Computational Infrastructure
	2.3.1 Grid
	2.3.2 Cluster Computing
	2.3.3 GPU Resources
	2.3.3.1 GPU Hardware Used in the 2PACF
	2.3.3.2 GPU Hardware Used in the Shear-Shear Correlation Calculation and Other Works
	2.3.3.3 Overview of GPU Architecture and Programming Model

	3 Evolutionary Algorithms
	3.1 Introduction
	3.2 Related Work
	3.2.1 Related Work for the Sensitiveness of Evolutionary Algorithms to the Random Number Generator
	3.2.2 Related Work for the Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm Algorithm as Case Study
	3.2.3 Related Work for the Application of Evolutionary Algorithms to the Resolution of Complex Problems: Bateman Conjecture as Case Study

	3.3 Computational Platforms for Analysing Evolutionary Algorithms
	3.3.1 Taxonomy of Grid Applications
	3.3.1.1 Taxonomy Based on the Application Type
	3.3.1.2 Extended Flynn Taxonomy
	3.3.1.3 Scientific Community Taxonomy
	3.3.1.4 Topological Taxonomy

	3.3.2 Volunteer Computing

	3.4 Sensitiveness of Evolutionary Algorithms to the Random Number Generator
	3.4.1 Production Setup
	3.4.2 Results and Analysis

	3.5 Analysis of Behaviour of Evolutionary Algorithms: Particle Swarm Algorithm as Case Study
	3.5.1 Performance Improvement in Multipopulation Particle Swarm Algorithm
	3.5.1.1 Multipopulation Modifications in PSO
	3.5.1.2 Results and Analysis

	3.5.2 Study of Performance of Particle Swarm Optimization Algorithms Using Grid Computing
	3.5.2.1 Weaknesses of Standard Particle Swarm Optimization
	3.5.2.2 Production Setup
	3.5.2.3 Results and Analysis

	3.6 Application of Evolutionary Algorithms to the Resolution of Complex Problems: Bateman Conjecture as Case Study
	3.6.1 Brute Force Approach
	3.6.2 Particle Swarm Optimizer Approach

	3.7 Conclusions

	4 GPU Computing
	4.1 Introduction
	4.2 Related Work
	4.2.1 Related Work for the Implementation of Evolutionary Algorithms in GPU and Analysis of its Behaviour
	4.2.2 Related Work for the Effect of Data Layout on GPU Evaluation Time

	4.3 Implementation of Evolutionary Algorithms in GPU: PSO as Case Study
	4.3.1 GPU-Based Evaluation to Accelerate Particle Swarm Algorithm
	4.3.1.1 Parallel Models of Evolutionary Algorithms
	4.3.1.2 Production Setup
	4.3.1.3 Adaptation of PSO Algorithm
	4.3.1.4 Study of the Rosenbrock Function
	4.3.1.5 Study of Schwefel's Problem 1.2
	4.3.1.6 Varying Population

	4.4 Analysis of the Behaviour of Evolutionary Algorithms in GPU: PSO as Case Study
	4.4.1 Results and Analysis

	4.5 Effect of Data Layout on GPU Evaluation Time
	4.5.1 Strategies Tested
	4.5.1.1 Strategy 1: Allocation of one Individual per Thread on Registers.
	4.5.1.2 Strategy 2: Allocation of one Individual per Thread on Shared Memory.
	4.5.1.3 Strategy 3: Allocation of one Individual per Thread-Block on Share Memory with Coalesced Access to Global Memory and Atomic Operations.
	4.5.1.4 Strategy 4: Allocation of one Individual per Thread on Registers with Coalesced Access to Global Memory.
	4.5.1.5 Sequential Evaluation

	4.5.2 Benchmark Functions
	4.5.3 Results and Analysis
	4.5.3.1 Rosenbrock Function
	4.5.3.2 F2-Light and F2-Heavy
	4.5.3.3 F4-Light and F4-Heavy
	4.5.3.4 Rana Function

	4.6 Conclusions

	5 Application of Evolutionary Algorithms to Astrophysics Problems
	5.1 Introduction
	5.1.1 Rotational Curves of Spiral Galaxy
	5.1.2 Low-Resolution Galaxy Spectral Energy Distribution

	5.2 Related Work
	5.2.1 Related Work for the Fitting of the Rotational Curves of Spiral Galaxy
	5.2.2 Related Work for the Fitting of the Low-Resolution Galaxy Spectral Energy Distribution
	5.2.3 Related Work for the Metaoptimization of Differential Evolution by Using Productions of Low-Number of Cycles.

	5.3 Application of Evolutionary Algorithm to Rotational Curves
	5.3.1 Sensitiveness of Evolutionary Algorithms to the Choice of the Random Number Generator: Rotational Curves of Spiral Galaxies as Case Study
	5.3.1.1 Production Setup
	5.3.1.2 Results and Analysis

	5.3.2 Adjustment of Rotational Curves of Spiral Galaxy to Specific Functional Forms Using Particle Swarm Algorithm and Differential Evolution
	5.3.2.1 Production Setup
	5.3.2.2 Results and Analysis

	5.3.3 Metaoptimization of Differential Evolution by Using Productions of Low-Number of Cycles: the Fitting of Rotation Curves of Spiral Galaxies as Case Study
	5.3.3.1 Implementation
	5.3.3.2 Metaoptimization Production
	5.3.3.3 Fitness Analysis
	5.3.3.4 Statistical Analysis
	5.3.3.5 Execution Time

	5.4 Metaheuristics for Modelling Low-Resolution Galaxy Spectral Energy Distribution
	5.4.1 Structure of the Candidate Solutions
	5.4.2 Results and Analysis
	5.4.2.1 Mutation Operator for SSP
	5.4.2.2 Mutation Operator for Coefficients
	5.4.2.3 PSO for Coefficients
	5.4.2.4 Differential Evolution for Coefficients
	5.4.2.5 Larger Number of Cycles

	5.5 Conclusions

	6 Application of GPU Computing to Astrophysics Problems
	6.1 Introduction
	6.1.1 The Two-Point Angular Correlation Function
	6.1.2 The Three-Point Angular Correlation Function
	6.1.3 The Shear-Shear Correlation Function

	6.2 Related Work
	6.2.1 Related Work for the Two-Point Angular Correlation Function
	6.2.2 Related Work for the Shear-Shear Correlation Function
	6.2.3 Related Work for the Improvement in the Precision of Histogram on GPU

	6.3 Application of GPU Computing to the Two-Point Angular Correlation Function
	6.3.1 GPU Implementation of 2PACF
	6.3.2 Initial Results
	6.3.3 Code Optimization
	6.3.4 Concurrent Computing Optimization
	6.3.4.1 Single Percentage Implementation
	6.3.4.2 Multiple Percentages Implementation

	6.4 Application of GPU Computing to Shear-Shear Calculation
	6.4.1 General Description of the Program Flow
	6.4.2 Memory Management
	6.4.3 Comparison with Athena Input Reference
	6.4.4 Comparison with 1 Million Galaxies Input Reference
	6.4.5 Code Optimization
	6.4.6 Heterogeneous Computing
	6.4.7 Further Code Optimization
	6.4.7.1 Reordering Loops
	6.4.7.2 Vectorization

	6.4.8 Hybrid MPI-CUDA Implementation

	6.5 Improvement in the Precision of Histogram Calculation on GPU
	6.5.1 Weaknesses of Number-Representation
	6.5.2 Results and Analysis
	6.5.2.1 Float-based Implementation
	6.5.2.2 Integer-based Implementation
	6.5.2.3 Unsigned-Integer-based Implementation
	6.5.2.4 Unsigned-Long-Long-Integer-based Implementation
	6.5.2.5 Float-based Alternative Implementation

	6.5.3 Real Cases
	6.5.3.1 Two-Point Angular Correlation Function
	6.5.3.2 Three-Point Angular Correlation Function
	6.5.3.3 Shear-Shear Correlation Function

	6.6 Conclusions

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work

	A Publications
	A.1 JCR-indexed Journal Articles Arising from this Thesis
	A.2 International Book Chapters Arising from this Thesis
	A.3 International Conference Proceedings Arising from this Thesis
	A.4 Other Publications Arising from this Thesis
	A.5 Publications No-Related to PhD

	B Other Activities
	B.1 Teaching
	B.2 Participation as Program Committee of International Conferences
	B.3 Reviewer of JCR-indexed Journals
	B.4 Research Projects Participation
	B.5 Other Merits

	Bibliography

